Cho Parabol \((P):y = - 0,5{x^2}\) và đường thẳng \((d):y = - 0,5x + 2\).
1) Vẽ đồ thị của hàm số \(y = - 0,5{x^2}\).
2) Viết phương trình đường thẳng \(\left( {{d_1}} \right)\) biết \(\left( {{d_1}} \right)\) vuông góc với \(\left( d \right)\) và \(\left( {{d_1}} \right)\) tiếp xúc \(\left( P \right)\).
Cho Parabol \((P):y = - 0,5{x^2}\) và đường thẳng \((d):y = - 0,5x + 2\).
1) Vẽ đồ thị của hàm số \(y = - 0,5{x^2}\).
2) Viết phương trình đường thẳng \(\left( {{d_1}} \right)\) biết \(\left( {{d_1}} \right)\) vuông góc với \(\left( d \right)\) và \(\left( {{d_1}} \right)\) tiếp xúc \(\left( P \right)\).
Quảng cáo
Trả lời:
1) Vẽ đồ thị của hàm số \(y = - 0,5{x^2}\).

2) \(\left( {{d_1}} \right):y = ax + b\) vuông góc với \((d):y = - 0,5x + 2\) nên có \(a.\left( { - 0,5} \right) = - 1 \Leftrightarrow a = 2\).
\(\left( {{d_1}} \right):y = 2x + b\) tiếp xúc \((P):y = - 0,5{x^2}\) nên phương trình \( - 0,5{x^2} = 2x + b \Leftrightarrow - 0,5{x^2} - 2x - b = 0\) có nghiệm kép nên \(\Delta = 4 - 2b = 0 \Leftrightarrow b = 2\).
Vậy phương trình đường thẳng \(\left( {{d_1}} \right):y = 2x + 2\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
1) Phương trình \({x^2} - 2(m + 1)x + {m^2} + m = 0\) có hai nghiệm phân biệt khi \(\Delta ' = {m^2} + 2m + 1 - {m^2} - m = m + 1 > 0 \Leftrightarrow m > - 1\).
Vậy \(m > - 1\) thì phương trình \({x^2} - 2(m + 1)x + {m^2} + m = 0\) có hai nghiệm phân biệt.
2) \({x^2} - 2(m + 1)x + {m^2} + m = 0\)
Ta có \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2(m + 1)\\{x_1}.{x_2} = {m^2} + m\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m = \frac{{{x_1} + {x_2}}}{2} - 1\\{x_1}{x_2} = {\left( {\frac{{{x_1} + {x_2}}}{2} - 1} \right)^2} + \frac{{{x_1} + {x_2}}}{2} - 1\end{array} \right.\) Þ \({\left( {{x_1} + {x_2}} \right)^2} - 2\left( {{x_1} + {x_2}} \right) - 4{x_1}{x_2} = 0\) là hệ thức liên hệ giữa \({x_1}\) và \({x_2}\) mà không phụ thuộc vào tham số m.
Lời giải
1) Giải phương trình \({x^2} + x - 6 = 0\).
\(\Delta = 25 > 0\) phương trình có hai nghiệm phân biệt
\({x_1} = \frac{{ - 1 + 5}}{2} = 2;\,\,{x_2} = \frac{{ - 1 - 5}}{2} = - 3\).
Tập nghiệm phương trình là \(S = \left\{ {2; - 3} \right\}\).
2) Giải phương trình \(x - 3\sqrt x = 4\).
Đặt \(t = \sqrt x \,\left( {x \ge 0,\,t \ge 0} \right)\) phương trình trở thành \({t^2} - 3t - 4 = 0\).
Ta có \(1 - ( - 3) - 4 = 0\) nên phương trình có hai nghiệm \({t_1} = - 1\) (loại), \({t_2} = 4\) (nhận).
Với \[t = 4 \Rightarrow \sqrt x = 4 \Leftrightarrow x = 16\].
Tập nghiệm phương trình là \(S = \left\{ {16} \right\}\).
3) Giải hệ phương trình \(\left\{ \begin{array}{l}x - y = - 1\\2x + 3y = 8\end{array} \right.\)
\(\left\{ \begin{array}{l}x - y = - 1\\2x + 3y = 8\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3x - 3y = - 3\\2x + 3y = 8\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}5x = 5\\2x + 3y = 8\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\2 + 3y = 8\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 2\end{array} \right.\)
Tập nghiệm hệ phương trình là \(S = \left\{ {\left( {1;2} \right)} \right\}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.