Đề thi tuyển sinh vào lớp 10 môn Toán năm 2023-2024 Bình Dương có đáp án
4.6 0 lượt thi 5 câu hỏi 45 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Đề thi HOT:
Đề minh họa thi vào lớp 10 môn Toán năm 2026 TP. Hồ Chí Minh
Đề thi tuyển sinh vào lớp 10 Toán năm học 2023 - 2024 Sở GD&ĐT Hà Nội có đáp án
67 bài tập Căn thức và các phép toán căn thức có lời giải
45 bài tập Phương trình quy về phương trình bậc nhất 2 ẩn và hệ phương trình bậc nhất 2 ẩn có lời giải
63 bài tập Tỉ số lượng giác và ứng dụng có lời giải
52 bài tập Hệ Phương trình bậc nhất hai ẩn và giải hệ phương trình bậc nhất hai ẩn có lời giải
52 bài tập Hệ thức lượng trong tam giác có lời giải
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
1) Giải phương trình \({x^2} + x - 6 = 0\).
\(\Delta = 25 > 0\) phương trình có hai nghiệm phân biệt
\({x_1} = \frac{{ - 1 + 5}}{2} = 2;\,\,{x_2} = \frac{{ - 1 - 5}}{2} = - 3\).
Tập nghiệm phương trình là \(S = \left\{ {2; - 3} \right\}\).
2) Giải phương trình \(x - 3\sqrt x = 4\).
Đặt \(t = \sqrt x \,\left( {x \ge 0,\,t \ge 0} \right)\) phương trình trở thành \({t^2} - 3t - 4 = 0\).
Ta có \(1 - ( - 3) - 4 = 0\) nên phương trình có hai nghiệm \({t_1} = - 1\) (loại), \({t_2} = 4\) (nhận).
Với \[t = 4 \Rightarrow \sqrt x = 4 \Leftrightarrow x = 16\].
Tập nghiệm phương trình là \(S = \left\{ {16} \right\}\).
3) Giải hệ phương trình \(\left\{ \begin{array}{l}x - y = - 1\\2x + 3y = 8\end{array} \right.\)
\(\left\{ \begin{array}{l}x - y = - 1\\2x + 3y = 8\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3x - 3y = - 3\\2x + 3y = 8\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}5x = 5\\2x + 3y = 8\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\2 + 3y = 8\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 2\end{array} \right.\)
Tập nghiệm hệ phương trình là \(S = \left\{ {\left( {1;2} \right)} \right\}\).
Lời giải
1) Vẽ đồ thị của hàm số \(y = - 0,5{x^2}\).

2) \(\left( {{d_1}} \right):y = ax + b\) vuông góc với \((d):y = - 0,5x + 2\) nên có \(a.\left( { - 0,5} \right) = - 1 \Leftrightarrow a = 2\).
\(\left( {{d_1}} \right):y = 2x + b\) tiếp xúc \((P):y = - 0,5{x^2}\) nên phương trình \( - 0,5{x^2} = 2x + b \Leftrightarrow - 0,5{x^2} - 2x - b = 0\) có nghiệm kép nên \(\Delta = 4 - 2b = 0 \Leftrightarrow b = 2\).
Vậy phương trình đường thẳng \(\left( {{d_1}} \right):y = 2x + 2\).
Lời giải
1) Phương trình \({x^2} - 2(m + 1)x + {m^2} + m = 0\) có hai nghiệm phân biệt khi \(\Delta ' = {m^2} + 2m + 1 - {m^2} - m = m + 1 > 0 \Leftrightarrow m > - 1\).
Vậy \(m > - 1\) thì phương trình \({x^2} - 2(m + 1)x + {m^2} + m = 0\) có hai nghiệm phân biệt.
2) \({x^2} - 2(m + 1)x + {m^2} + m = 0\)
Ta có \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2(m + 1)\\{x_1}.{x_2} = {m^2} + m\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m = \frac{{{x_1} + {x_2}}}{2} - 1\\{x_1}{x_2} = {\left( {\frac{{{x_1} + {x_2}}}{2} - 1} \right)^2} + \frac{{{x_1} + {x_2}}}{2} - 1\end{array} \right.\) Þ \({\left( {{x_1} + {x_2}} \right)^2} - 2\left( {{x_1} + {x_2}} \right) - 4{x_1}{x_2} = 0\) là hệ thức liên hệ giữa \({x_1}\) và \({x_2}\) mà không phụ thuộc vào tham số m.
Lời giải
Gọi giá tiền niêm yết (khi chưa giảm giá) của một cái quạt máy và một ấm đun siêu tốc là \(x,\,y\,\left( {x > 0,\,y > 0} \right)\) (đồng).
Ta có phương trình \(x + y = 630000\).
Giá tiền quạt máy sau khi giảm giá là \(x - 15\% x = 85\% x = 0,85x\).
Giá tiền ấm siêu tốc sau khi giảm giá là \(y - 12\% y = 88\% y = 0,88y\).
Ta có phương trình \(0,85x + 0,88y = 543000\).
Giải hệ \(\left\{ \begin{array}{l}x + y = 630000\\0,85x + 0,88y = 543000\end{array} \right.\)
\(\left\{ \begin{array}{l}x + y = 630000\\0,85x + 0,88y = 543000\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}0,88x + 0,88y = 554400\\0,85x + 0,88y = 543000\end{array} \right. \Leftrightarrow \) \(\left\{ \begin{array}{l}0,03x = 11400\\x + y = 630000\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 380000\\380000 + y = 630000\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 380000\\y = 250000\end{array} \right.\)
Vậy giá tiền niêm yết (khi chưa giảm giá) của một cái quạt máy và một ấm đun siêu tốc là 380000 (đồng) và 250000 (đồng).
Lời giải
1) Ta có CH ^ BD Þ H nhìn CD dưới một góc vuông (1)
Theo tính chất hai tiếp tuyến cắt nhau CD và BD, ta có DC = DB
Hai bán kính OC = OB
Þ OD là trung trực của BC Þ OD ^ CB
Þ N nhìn CD dưới một góc vuông (2)
Từ (1) và (2) Þ tứ giác CNHD nội tiếp được trong đường tròn.

2) Theo tính chất hai tiếp tuyến cắt nhau CD và BD, ta có DC = DB, ta có \(\widehat {{D_1}} = \widehat {{D_2}}\)
Theo tính chất tiếp tuyến và giả thiết, ta có góc \(\widehat {COD} = \widehat {DMH}\) (cùng phụ với hai góc bằng nhau\(\widehat {{D_1}} = \widehat {{D_2}}\))
Mặt khác \(\widehat {DMH} = \widehat {CMO}\) (đối đỉnh) Þ \(\widehat {COD} = \widehat {CMO}\)
DCOM có \(\widehat {COM} = \widehat {CMO}\) Þ cân tại C Þ \(CM = CO\).
3) DEAC và DECB có góc E chung và góc \(\widehat {ECA} = \widehat {CBA}\) (cùng chắn cung AC)
Þ đồng dạng Þ \(\frac{{EA}}{{EC}} = \frac{{EC}}{{EB}} \Rightarrow EA.EB = E{C^2}\).
4) Hình nón được tạo bởi tam giác vuông DNB quay quanh DN
Þ bán kính \(r = NB\) và chiều cao \(h = ND\).
Theo Pitago cho tam giác vuông BOD: \(OD = \sqrt {O{B^2} + B{D^2}} = \sqrt {36 + 64} = 10cm\).
Theo hệ thức lượng trong tam giác vuông BOD, ta có: \(BN.OD = OB.BD \Rightarrow BN = \frac{{6.8}}{{10}} = 4,8cm\).
Và \(B{D^2} = DN.DO \Rightarrow DN = \frac{{64}}{{10}} = 6,4cm\)
Thể tích của hình nón tạo thành \(V = \frac{1}{3}\pi .{r^2}.h = \frac{1}{3}\pi .{(4,8)^2}.6,4 = \frac{{6144}}{{125}}\pi \approx 154,4156\,\left( {c{m^3}} \right)\).