Đề luyện thi Toán vào lớp 10 Hà Nội 2026 có đáp án - Đề 9
4.6 0 lượt thi 10 câu hỏi 120 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Đề thi HOT:
Đề minh họa thi vào lớp 10 môn Toán năm 2026 TP. Hồ Chí Minh
Đề thi tuyển sinh vào lớp 10 Toán năm học 2023 - 2024 Sở GD&ĐT Hà Nội có đáp án
67 bài tập Căn thức và các phép toán căn thức có lời giải
45 bài tập Phương trình quy về phương trình bậc nhất 2 ẩn và hệ phương trình bậc nhất 2 ẩn có lời giải
52 bài tập Hệ thức lượng trong tam giác có lời giải
52 bài tập Hệ Phương trình bậc nhất hai ẩn và giải hệ phương trình bậc nhất hai ẩn có lời giải
63 bài tập Tỉ số lượng giác và ứng dụng có lời giải
Nội dung liên quan:
Danh sách câu hỏi:
Đoạn văn 1
Lời giải
Từ bảng tần số trên ta thấy có \(12\) học viên đạt điểm từ \(\left[ {7,5;10} \right)\).
Vậy có 12 học viên xếp loại \(A\).
Lời giải
Không gian mẫu của phép thử là \(\Omega = \left\{ {10;\,11;\,12;\,13;\,14.........\,96;\,97;\,98;\,99} \right\}\). Tập \(\Omega \) có \(90\) phần tử.
Vì các chữ số bạn Linh viết một cách ngẫu nhiên khả năng các số được viết ra là đồng khả năng.
Gọi \(A\) là tập hợp các kết quả thuận lợi của biến cố \(F\)
Suy ra\(A = \left\{ {12;\,16;\,20;\,24;\,.........88;92;96} \right\}\).
Số phần tử của tập \(A\) là \(\frac{{96 - 12}}{4} + 1 = 22\). (Công thức tính số số hạng của dãy số)
Vậy \(P\left( F \right) = \frac{{22}}{{90}} = \frac{{11}}{{45}}\).
Đoạn văn 2
Lời giải
Ta có \(x = 16\) (thỏa mãn điều kiện), thay vào biểu thức \(A\) ta có:
\(A = \frac{{16 + 2\sqrt {16} + 5}}{{\sqrt {16} - 3}} = \frac{{29}}{1} = 29\)
Vậy khi \(x = 16\) thì \(A = 29\)
Lời giải
a) Ta có \(P = \frac{{\sqrt x + 2}}{{\sqrt x + 3}} - \frac{5}{{x + \sqrt x - 6}} - \frac{1}{{\sqrt x - 2}}\)
\( = \frac{{\sqrt x + 2}}{{\sqrt x + 3}} - \frac{5}{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 2} \right)}} - \frac{1}{{\sqrt x - 2}}\)
\( = \frac{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right) - 5 - \left( {\sqrt x + 3} \right)}}{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 2} \right)}}\)
\( = \frac{{x - 4 - 5 - \sqrt x - 3}}{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 2} \right)}} = \frac{{x - \sqrt x - 12}}{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 2} \right)}}\)
\( = \frac{{\left( {\sqrt x - 4} \right)\left( {\sqrt x + 3} \right)}}{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 2} \right)}} = \frac{{\sqrt x - 4}}{{\sqrt x - 2}}\)
Vậy khi \(x \ge 0;x \ne 4\), thì \(P = \frac{{\sqrt x - 4}}{{\sqrt x - 2}}\)(điều phải chứng minh).
b) Ta có \(P = \frac{{\sqrt x - 4}}{{\sqrt x - 2}}\) với điều kiện \(x \ge 0;x \ne 4\)
+ Để \({P^2} > P\) thì \(P\left( {P - 1} \right) > 0\)
\(\frac{{\sqrt x - 4}}{{\sqrt x - 2}}.\left( {\frac{{\sqrt x - 4}}{{\sqrt x - 2}} - 1} \right) > 0\) hay \(\frac{{ - 2\left( {\sqrt x - 4} \right)}}{{{{\left( {\sqrt x - 2} \right)}^2}}} > 0\)
\( - 2\left( {\sqrt x - 4} \right) > 0\) (vì \({\left( {\sqrt x - 2} \right)^2} > 0\,\,\forall x\) thỏa mãn điều kiện xác định)
\(\begin{array}{l}\sqrt x - 4 < 0\\x < 16\end{array}\)
Kết hợp với điều kiện ta được \(\left\{ \begin{array}{l}0 < x < 16\\x \ne 4\end{array} \right.\)
Vậy khi \(\left\{ \begin{array}{l}0 < x < 16\\x \ne 4\end{array} \right.\) thì \({P^2} > P\).
Đoạn văn 3
Lời giải
Gọi số bước chân anh Sơn và chị Hà đi được trong 1 phút lần lượt là x và y \(\left( {x,y \in {\mathbb{N}^*}} \right).\)
Vì nếu cùng đi trong 2 phút thì anh Sơn bước nhiều hơn chị Hà 20 bước nên ta có phương trình \(2x - 2y = 20\) (1).
Vì nếu chị Hà đi trong 5 phút thì lại nhiều hơn anh Sơn đi trong 3 phút là 160 bước từ đó ta có \(5y - 3x = 160\) (2).
Từ (1) và (2) suy ra x = 105 và y = 95.
Vậy trong một giờ anh Sơn đi được \(105.60 = 6300\)
trong một giờ chị Hà đi được \(95.60 = 5700\).
Do anh Sơn và chị Hà đề ra mục tiêu mỗi ngày một người phải đi bộ ít nhất 6000 bước nên anh Sơn đã đạt được mục tiêu tối thiểu mà mình đề ra, còn chị Hà thì chưa.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đoạn văn 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

