Đề luyện thi Toán vào lớp 10 Hà Nội 2026 có đáp án - Đề 48
3 người thi tuần này 4.6 3 lượt thi 9 câu hỏi 120 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Đề thi HOT:
Đề minh họa thi vào lớp 10 môn Toán năm 2026 TP. Hồ Chí Minh
Đề thi tuyển sinh vào lớp 10 Toán năm học 2023 - 2024 Sở GD&ĐT Hà Nội có đáp án
67 bài tập Căn thức và các phép toán căn thức có lời giải
45 bài tập Phương trình quy về phương trình bậc nhất 2 ẩn và hệ phương trình bậc nhất 2 ẩn có lời giải
63 bài tập Tỉ số lượng giác và ứng dụng có lời giải
52 bài tập Hệ Phương trình bậc nhất hai ẩn và giải hệ phương trình bậc nhất hai ẩn có lời giải
52 bài tập Hệ thức lượng trong tam giác có lời giải
Nội dung liên quan:
Danh sách câu hỏi:
Đoạn văn 1
Lời giải
Nhóm \[\left[ {40\,\,;\,\,60} \right)\] có tần số tương đối là \[\frac{{11}}{{36}} \approx 30,6\% \]
Lời giải
Ta có\(\Omega = \left\{ {1\,;\,2\,;\,3\,;\,4\,;\,5\,;\,6\,;\,7\,;\,\left. 8 \right\}} \right.\), có 8 phần tử.
Các kết quả thuận lợi cho biến cố: “Mũi tên chỉ vào hình quạt ghi số là ước của \[8\]”
là: \[1\,;\,2\,;\,4\,;\,8\]
\( \Rightarrow \)Xác suất của biến cố: “Mũi tên chỉ vào hình quạt ghi số là ước của \[8\]” là: \(\frac{4}{8} = \frac{1}{2}\)
Lời giải
1) Tính giá trị của biểu thức \(B\) với \(x = 25\).
Với \(x = 25\) (thỏa mãn điều kiện) thay vào biểu thức \(B\) ta có:
\(B = \frac{{\sqrt {25} + 3}}{{\sqrt {25} + 1}} = \frac{{5 + 3}}{{5 + 1}} = \frac{8}{6} = \frac{4}{3}\).
Vậy \(B = \frac{4}{3}\) khi \(x = 25\).
2) Chứng minh \(A = \frac{{\sqrt x + 1}}{{\sqrt x + 2}}\).
Ta có: \(A = \frac{{\sqrt x }}{{\sqrt x - 1}} + \frac{1}{{\sqrt x + 2}} - \frac{{3\sqrt x }}{{x + \sqrt x - 2}}\)
\( = \frac{{\sqrt x }}{{\sqrt x - 1}} + \frac{1}{{\sqrt x + 2}} - \frac{{3\sqrt x }}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 2} \right)}}\)
\( = \frac{{\sqrt x \left( {\sqrt x + 2} \right) + \left( {\sqrt x - 1} \right) - 3\sqrt x }}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 2} \right)}} = \frac{{x - 1}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 2} \right)}}\)
\( = \frac{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 2} \right)}} = \frac{{\sqrt x + 1}}{{\sqrt x + 2}}\)
Vậy \(A = \frac{{\sqrt x + 1}}{{\sqrt x + 2}}\)với \(x \ge 0\); \(x \ne 1\).
3) Tìm \(x\) để biểu thức \(S = A.B\) đạt giá trị lớn nhất.
Với \(x \ge 0\); \(x \ne 1\).
Ta có: \(S = A.B = \frac{{\sqrt x + 1}}{{\sqrt x + 2}}.\frac{{\sqrt x + 3}}{{\sqrt x + 1}} = \frac{{\sqrt x + 3}}{{\sqrt x + 2}} = 1 + \frac{1}{{\sqrt x + 2}}\)
Ta có: \(x \ge 0\)\( \Rightarrow \sqrt x + 2 \ge 2\)\( \Rightarrow \frac{1}{{\sqrt x + 2}} \le \frac{1}{2}\)\( \Rightarrow 1 + \frac{1}{{\sqrt x + 2}} \le 1 + \frac{1}{2} = \frac{3}{2}\)
Dấu xảy ra khi \(x = 0\) (thỏa mãn điều kiện).
Vậy GTLN của \(S\) là \(\frac{3}{2}\) khi \(x = 0\).
Lời giải

Đặt \(h,\,\,R\) lần lượt là đường cao và bán kính hình tròn đáy của hộp đựng bóng tennis.
Dễ thấy mỗi quả bóng tennis có cùng bán kính \(R\) với hình tròn đáy của hộp đựng bóng tennis và \(h = 6R\).
Do đó ta có:
Tổng thể tích của ba quả bóng là \({V_1} = 3.\frac{4}{3}\pi {R^3} = 4\pi {R^3}\);
Thể tích của hình trụ (hộp đựng bóng) là \({V_0} = \pi {R^2}h = 6\pi {R^3}\);
Thể tích phần còn trống của hộp đựng bóng là \({V_2} = {V_0} - {V_1} = 2\pi {R^3}\).
Khi đó tỉ lệ phần không gian còn trống so với hộp đựng bóng là \(\frac{{{V_2}}}{{{V_0}}} = \frac{1}{3} \approx 0,33 \approx 33\% \).
Đoạn văn 2
Lời giải
Gọi \(x\) ( triệu đồng) là giá tiền một tủ lạnh khi chưa giảm giá \((x > 0)\)
Gọi \(y\) ( triệu đồng) là giá tiền một máy giặt khi chưa giảm giá \((y > 0)\)
Giá niêm yết hai món đồ trên là \(25,4\) triệu nên có phương trình:
\(x + y = 25,4\)
Giá bán hai món đồ trên sau khi giảm giá là \(16,77\)triệu nên có phương trình
\(\left( {100\% - 40\% } \right).x + \left( {100\% - 25\% } \right).y = 16,77\)
Giải hệ phương trình \[\left\{ \begin{array}{l}x + y = 25,4\\\frac{3}{5}x + \frac{3}{4}y = 16,77\end{array} \right.\] \[ \Leftrightarrow \left\{ \begin{array}{l}x = 15,2(t/m)\\y = 10,2(t/m)\end{array} \right.\]
Vậy giá một tủ lạnh chưa giảm giá là \(15,2\) triệu đồng
Giá một máy giặt chưa giảm giá là \(10,2\)triệu đồng
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đoạn văn 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

