Đề thi thử TS vào 10 (Tháng 2) năm học 2025 - 2026_Môn Toán_THCS Xuân La_Quận Tây Hồ_TP. Hà Nội
39 người thi tuần này 4.6 406 lượt thi 13 câu hỏi 60 phút
🔥 Đề thi HOT:
Đề thi thử TS vào 10 (Tháng 1) năm học 2025 - 2026_Môn Toán_THCS Cầu Giấy_Quận Cầu Giấy
45 bài tập Phương trình quy về phương trình bậc nhất 2 ẩn và hệ phương trình bậc nhất 2 ẩn có lời giải
22 bài tập Phương trình quy về phương trình bậc nhất một ẩn có lời giải
52 bài tập Hệ Phương trình bậc nhất hai ẩn và giải hệ phương trình bậc nhất hai ẩn có lời giải
Đề thi thử TS vào 10 (Tháng 4) năm học 2025 - 2026_Môn Toán_THPT Chu Văn An_Tỉnh Thái Nguyên
Nội dung liên quan:
Danh sách câu hỏi:
Đoạn văn 1
Câu 1-2: (1,5 điểm)
Lời giải
1) Tần số ghép nhóm của nhóm là 6 .
Tần số tương đối ghép nhóm của nhóm là
Lời giải
Không gian mẫu của phép thử là \[\Omega = \left\{ {1;\,\,2;\,\,3;\,\,...;\,\,19;\,\,20} \right\}.\]
Không gian mẫu có 20 phần tử.
Có \[6\] kết quả thuận lợi cho biến cố \[A\] là \[3;\,\,6;\,\,9;\,\,12;\,\,15;\,\,18.\]
Vậy \[P\left( A \right) = \frac{6}{{20}} = \frac{3}{{10}}.\]
Đoạn văn 2
Cho hai biểu thức và với
Lời giải
Thay \(x = 1\) (thỏa mãn điều kiện) vào biểu thức \(A\) ta được: \(A = \frac{{2\sqrt 1 + 7}}{{\sqrt 1 + 2}} = \frac{{2 + 7}}{{1 + 2}} = \frac{9}{3} = 3.\)
Vậy \(A = 3\) khi \(x = 1.\)
Lời giải
Với \(x \ge 0,\,x \ne 4,\) ta có:
\(B = \frac{1}{{\sqrt x - 2}} + \frac{{\sqrt x - 6}}{{x - 4}}\)\( = \frac{1}{{\sqrt x - 2}} + \frac{{\sqrt x - 6}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}\)
\( = \frac{{\sqrt x + 2 + \sqrt x - 6}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}\)\( = \frac{{2\sqrt x - 4}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}\)
\( = \frac{{2\left( {\sqrt x - 2} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}\)\( = \frac{2}{{\sqrt x + 2}}.\)
Vậy với \(x \ge 0,\,x \ne 4\) thì \(B = \frac{2}{{\sqrt x + 2}}.\)
Lời giải
Với \(x \ge 0,\,x \ne 4,\) ta có:
\(A + B = \frac{{2\sqrt x + 7}}{{\sqrt x + 2}} + \frac{2}{{\sqrt x + 2}} = \frac{{2\sqrt x + 9}}{{\sqrt x + 2}} = \frac{{2\left( {\sqrt x + 2} \right) + 5}}{{\sqrt x + 2}} = 2 + \frac{5}{{\sqrt x + 2}}.\)
⦁ Do \(x \ge 0\)nên \(\sqrt x \ge 0.\)
Khi đó \(\sqrt x + 2 > 0\) nên \[\frac{5}{{\sqrt x + 2}} > 0\]. Suy ra \(2 + \frac{5}{{\sqrt x + 2}} > 2\) hay \(A + B > 2\,\,(1)\)
⦁ Vì\(\sqrt x \ge 0\) nên \(\sqrt x + 2 \ge 2.\) Suy ra \(\frac{5}{{\sqrt x + 2}} \le \frac{5}{2}.\) Do đó \(2 + \frac{5}{{\sqrt x + 2}} \le \frac{9}{2}\) hay \(A + B \le \frac{9}{2}\,(2)\)
Từ (1) và (2) suy ra \(2 < A + B \le \frac{9}{2}.\)
Để \(A + B\) đạt giá trị nguyên nhỏ nhất thì \(A + B = 3.\)
Suy ra \(2 + \frac{5}{{\sqrt x + 2}} = 3\)
\(\frac{5}{{\sqrt x + 2}} = 1\)
\(\sqrt x + 2 = 5\)
\(\sqrt x = 3\)
\(x = 9\) (thỏa mãn).
Vậy \(x = 9\,\)thì biểu thức \(A + B\) đạt giá trị nguyên nhỏ nhất bằng 3.
Đoạn văn 3
Câu 6-8 (2,5 điểm)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đoạn văn 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.