Câu hỏi:
11/03/2025 232Quảng cáo
Trả lời:
Thay \(x = 1\) (thỏa mãn điều kiện) vào biểu thức \(A\) ta được: \(A = \frac{{2\sqrt 1 + 7}}{{\sqrt 1 + 2}} = \frac{{2 + 7}}{{1 + 2}} = \frac{9}{3} = 3.\)
Vậy \(A = 3\) khi \(x = 1.\)
Câu hỏi cùng đoạn
Câu 2:
Lời giải của GV VietJack
Với \(x \ge 0,\,x \ne 4,\) ta có:
\(B = \frac{1}{{\sqrt x - 2}} + \frac{{\sqrt x - 6}}{{x - 4}}\)\( = \frac{1}{{\sqrt x - 2}} + \frac{{\sqrt x - 6}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}\)
\( = \frac{{\sqrt x + 2 + \sqrt x - 6}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}\)\( = \frac{{2\sqrt x - 4}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}\)
\( = \frac{{2\left( {\sqrt x - 2} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}\)\( = \frac{2}{{\sqrt x + 2}}.\)
Vậy với \(x \ge 0,\,x \ne 4\) thì \(B = \frac{2}{{\sqrt x + 2}}.\)
Câu 3:
Lời giải của GV VietJack
Với \(x \ge 0,\,x \ne 4,\) ta có:
\(A + B = \frac{{2\sqrt x + 7}}{{\sqrt x + 2}} + \frac{2}{{\sqrt x + 2}} = \frac{{2\sqrt x + 9}}{{\sqrt x + 2}} = \frac{{2\left( {\sqrt x + 2} \right) + 5}}{{\sqrt x + 2}} = 2 + \frac{5}{{\sqrt x + 2}}.\)
⦁ Do \(x \ge 0\)nên \(\sqrt x \ge 0.\)
Khi đó \(\sqrt x + 2 > 0\) nên \[\frac{5}{{\sqrt x + 2}} > 0\]. Suy ra \(2 + \frac{5}{{\sqrt x + 2}} > 2\) hay \(A + B > 2\,\,(1)\)
⦁ Vì\(\sqrt x \ge 0\) nên \(\sqrt x + 2 \ge 2.\) Suy ra \(\frac{5}{{\sqrt x + 2}} \le \frac{5}{2}.\) Do đó \(2 + \frac{5}{{\sqrt x + 2}} \le \frac{9}{2}\) hay \(A + B \le \frac{9}{2}\,(2)\)
Từ (1) và (2) suy ra \(2 < A + B \le \frac{9}{2}.\)
Để \(A + B\) đạt giá trị nguyên nhỏ nhất thì \(A + B = 3.\)
Suy ra \(2 + \frac{5}{{\sqrt x + 2}} = 3\)
\(\frac{5}{{\sqrt x + 2}} = 1\)
\(\sqrt x + 2 = 5\)
\(\sqrt x = 3\)
\(x = 9\) (thỏa mãn).
Vậy \(x = 9\,\)thì biểu thức \(A + B\) đạt giá trị nguyên nhỏ nhất bằng 3.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
1) Tần số ghép nhóm của nhóm là 6 .
Tần số tương đối ghép nhóm của nhóm là
Lời giải
Gọi số sản phẩm công ty thứ nhất bán được năm ngoái là \(x\,\,\left( {x \in {\mathbb{N}^*}} \right)\)(sản phẩm).
Số sản phẩm công ty thứ hai bán được năm ngoái là \(7200 - x\) (sản phẩm).
Số sản phẩm công ty thứ nhất bán được năm nay là \(115\% x = 1,15x\) (sản phẩm).
Số sản phẩm công ty thứ hai bán được năm nay là \(112\% \left( {7200 - x} \right) = 1,12\left( {7200 - x} \right)\)(sản phẩm).
Vì năm nay cả hai công ty bán được \(8190\) sản phẩm nên ta có phương trình:
\(1,15x + 1,12\left( {7200 - x} \right) = 8190.\)
Giải phương trình:
\[1,15x + 1,12\left( {7200 - x} \right) = 8190\]
\(1,15x + 8064 - 1,12x = 8190\)
\(0,03x = 126\)
\(x = 4200\)(thỏa mãn).
Số sản phẩm công ty thứ hai bán được trong năm ngoái là \(7200 - 4200 = 3000\) (sản phẩm).
Vậy số sản phẩm công ty thứ nhất, công ty thứ hai bán được trong năm ngoái lần lượt là \(4200;\,\,3000\) sản phẩm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đề thi tham khảo môn Toán vào 10 tỉnh Quảng Bình năm học 2025-2026
Đề thi thử TS vào 10 (Tháng 4) năm học 2025 - 2026_Môn Toán_Phòng GD&ĐT Huyện Giao Thủy_Tỉnh Nam Định
Đề thi thử TS vào 10 Tháng 5 năm học 2025 - 2026_Môn Toán
Đề thi thử TS vào 10 (Tháng 4) năm học 2025 - 2026_Môn Toán_THPT Chu Văn An_Tỉnh Thái Nguyên
Đề thi thử TS vào 10 Tháng 5 năm học 2025 - 2026_Môn Toán
Đề thi thử TS vào 10 Tháng 6 năm học 2025 - 2026_Môn Toán
Đề thi thử TS vào 10 Tháng 6 năm học 2025 - 2026_Môn Toán
Đề thi thử TS vào 10 Tháng 5 năm học 2025 - 2026_Môn Toán
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận