Câu hỏi:
11/03/2025 233Quảng cáo
Trả lời:
Thay \(x = 1\) (thỏa mãn điều kiện) vào biểu thức \(A\) ta được: \(A = \frac{{2\sqrt 1 + 7}}{{\sqrt 1 + 2}} = \frac{{2 + 7}}{{1 + 2}} = \frac{9}{3} = 3.\)
Vậy \(A = 3\) khi \(x = 1.\)
Câu hỏi cùng đoạn
Câu 2:
Lời giải của GV VietJack
Với \(x \ge 0,\,x \ne 4,\) ta có:
\(B = \frac{1}{{\sqrt x - 2}} + \frac{{\sqrt x - 6}}{{x - 4}}\)\( = \frac{1}{{\sqrt x - 2}} + \frac{{\sqrt x - 6}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}\)
\( = \frac{{\sqrt x + 2 + \sqrt x - 6}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}\)\( = \frac{{2\sqrt x - 4}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}\)
\( = \frac{{2\left( {\sqrt x - 2} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}\)\( = \frac{2}{{\sqrt x + 2}}.\)
Vậy với \(x \ge 0,\,x \ne 4\) thì \(B = \frac{2}{{\sqrt x + 2}}.\)
Câu 3:
Lời giải của GV VietJack
Với \(x \ge 0,\,x \ne 4,\) ta có:
\(A + B = \frac{{2\sqrt x + 7}}{{\sqrt x + 2}} + \frac{2}{{\sqrt x + 2}} = \frac{{2\sqrt x + 9}}{{\sqrt x + 2}} = \frac{{2\left( {\sqrt x + 2} \right) + 5}}{{\sqrt x + 2}} = 2 + \frac{5}{{\sqrt x + 2}}.\)
⦁ Do \(x \ge 0\)nên \(\sqrt x \ge 0.\)
Khi đó \(\sqrt x + 2 > 0\) nên \[\frac{5}{{\sqrt x + 2}} > 0\]. Suy ra \(2 + \frac{5}{{\sqrt x + 2}} > 2\) hay \(A + B > 2\,\,(1)\)
⦁ Vì\(\sqrt x \ge 0\) nên \(\sqrt x + 2 \ge 2.\) Suy ra \(\frac{5}{{\sqrt x + 2}} \le \frac{5}{2}.\) Do đó \(2 + \frac{5}{{\sqrt x + 2}} \le \frac{9}{2}\) hay \(A + B \le \frac{9}{2}\,(2)\)
Từ (1) và (2) suy ra \(2 < A + B \le \frac{9}{2}.\)
Để \(A + B\) đạt giá trị nguyên nhỏ nhất thì \(A + B = 3.\)
Suy ra \(2 + \frac{5}{{\sqrt x + 2}} = 3\)
\(\frac{5}{{\sqrt x + 2}} = 1\)
\(\sqrt x + 2 = 5\)
\(\sqrt x = 3\)
\(x = 9\) (thỏa mãn).
Vậy \(x = 9\,\)thì biểu thức \(A + B\) đạt giá trị nguyên nhỏ nhất bằng 3.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
1) Tần số ghép nhóm của nhóm là 6 .
Tần số tương đối ghép nhóm của nhóm là
Lời giải
Gọi số sản phẩm công ty thứ nhất bán được năm ngoái là \(x\,\,\left( {x \in {\mathbb{N}^*}} \right)\)(sản phẩm).
Số sản phẩm công ty thứ hai bán được năm ngoái là \(7200 - x\) (sản phẩm).
Số sản phẩm công ty thứ nhất bán được năm nay là \(115\% x = 1,15x\) (sản phẩm).
Số sản phẩm công ty thứ hai bán được năm nay là \(112\% \left( {7200 - x} \right) = 1,12\left( {7200 - x} \right)\)(sản phẩm).
Vì năm nay cả hai công ty bán được \(8190\) sản phẩm nên ta có phương trình:
\(1,15x + 1,12\left( {7200 - x} \right) = 8190.\)
Giải phương trình:
\[1,15x + 1,12\left( {7200 - x} \right) = 8190\]
\(1,15x + 8064 - 1,12x = 8190\)
\(0,03x = 126\)
\(x = 4200\)(thỏa mãn).
Số sản phẩm công ty thứ hai bán được trong năm ngoái là \(7200 - 4200 = 3000\) (sản phẩm).
Vậy số sản phẩm công ty thứ nhất, công ty thứ hai bán được trong năm ngoái lần lượt là \(4200;\,\,3000\) sản phẩm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Đắk Lắk
123 bài tập Nón trụ cầu và hình khối có lời giải
50 bài tập Một số yếu tố xác suất có lời giải
Đề thi tham khảo môn Toán vào 10 tỉnh Quảng Bình năm học 2025-2026
Đề thi minh họa (Dự thảo) TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Đồng Nai
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_TP Hà Nội
Đề thi thử TS vào 10 (Lần 2 - Tháng 2) năm học 2025 - 2026_Môn Toán_THCS Hoằng Thanh_Tỉnh Thanh Hóa
Đề thi tham khảo TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Bình Phước
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận