Đề thi minh họa Toán vào 10 năm học 2025 - 2026 Thái Bình
29 người thi tuần này 4.6 137 lượt thi 8 câu hỏi
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
Đề thi tuyển sinh vào lớp 10 môn Toán Sở GD&ĐT Đắk Nông năm học 2025-2026 có đáp án
Đề thi tuyển sinh vào lớp 10 môn Toán Sở GD&ĐT Bắc Kạn năm học 2025-2026 có đáp án
Đề thi tuyển sinh vào lớp 10 môn Toán Sở GD&ĐT Đắk Lắk năm học 2025-2026 có đáp án
Đề thi tuyển sinh vào lớp 10 môn Toán Sở GD&ĐT Long An năm học 2025-2026 có đáp án
Đề thi tuyển sinh vào lớp 10 môn Toán Sở GD&ĐT Thanh Hóa năm học 2025-2026 có đáp án
Đề thi tuyển sinh vào lớp 10 môn Toán Sở GD&ĐT Lào Cai năm học 2025-2026 có đáp án
Đề thi tuyển sinh vào lớp 10 môn Toán Sở GD&ĐT Trà Vinh năm học 2025-2026 có đáp án
Đề thi tuyển sinh vào lớp 10 môn Toán Sở GD&ĐT Yên Bái năm học 2025-2026 có đáp án
Danh sách câu hỏi:
Lời giải
1) Thay \(x = 9\) (thoả mãn điều kiện \(x \ge 0,\,\,x \ne 1)\) vào biểu thức \[B\] ta được:
\(B = \frac{{\sqrt 9 - 1}}{{\sqrt 9 + 1}} = \frac{2}{4} = \frac{1}{2}.\)
Vậy khi \(x = 9\) thì \(B = \frac{1}{2}.\)
2) Với \(x \ge 0,\,\,x \ne 1,\) ta có:
\(A = \frac{{\sqrt x }}{{\sqrt x - 1}} - \frac{2}{{\sqrt x + 2}} + \frac{{4\sqrt x + 2}}{{x + \sqrt x - 2}}\)
\( = \frac{{\sqrt x \left( {\sqrt x + 2} \right)}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 2} \right)}} - \frac{{2\left( {\sqrt x - 1} \right)}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 2} \right)}} + \frac{{4\sqrt x + 2}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 2} \right)}}\)
\( = \frac{{x + 2\sqrt x - 2\sqrt x + 2 + 4\sqrt x + 2}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 2} \right)}}\)
\( = \frac{{x + 4\sqrt x + 4}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 2} \right)}}\)
\( = \frac{{{{\left( {\sqrt x + 2} \right)}^2}}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 2} \right)}} = \frac{{\sqrt x + 2}}{{\sqrt x - 1}}.\)
Vậy \(A = \frac{{\sqrt x + 2}}{{\sqrt x - 1}}.\)
3) Với \(x \ge 0,\,\,x \ne 1,\) ta có:
\(T = 4 - \frac{3}{2}AB = 4 - \frac{3}{2} \cdot \frac{{\sqrt x + 2}}{{\sqrt x - 1}} \cdot \frac{{\sqrt x - 1}}{{\sqrt x + 1}} = 4 - \frac{3}{2} \cdot \frac{{\sqrt x + 2}}{{\sqrt x + 1}}\)
\[ = \frac{{4 \cdot 2\left( {\sqrt x + 1} \right) - 3\left( {\sqrt x + 2} \right)}}{{2\left( {\sqrt x + 1} \right)}}\]\[ = \frac{{8\sqrt x + 8 - 3\sqrt x - 6}}{{2\left( {\sqrt x + 1} \right)}}\]
\( = \frac{{5\sqrt x + 2}}{{2\left( {\sqrt x + 1} \right)}} = \frac{{5\left( {\sqrt x + 1} \right) - 3}}{{2\left( {\sqrt x + 1} \right)}} = \frac{5}{2} - \frac{3}{{2\left( {\sqrt x + 1} \right)}}.\)
Với \(x \ge 0,\,\,x \ne 1\) thì \(\sqrt x + 1 > 0\) nên \(\frac{3}{{2\left( {\sqrt x + 1} \right)}} > 0\) suy ra \(\frac{5}{2} - \frac{3}{{2\left( {\sqrt x + 1} \right)}} < \frac{5}{2}.\)
Vì \[T\] nhận giá trị nguyên lớn nhất nên \(T = 2,\) tức là \(\frac{{5\sqrt x + 2}}{{2\left( {\sqrt x + 1} \right)}} = 2,\) suy ra \(5\sqrt x + 2 = 4\sqrt x + 4\) hay \(\sqrt x = 2,\) ta tìm được \(x = 4\) (thoả mãn điều kiện \(x \ge 0,\,\,x \ne 1).\)
Vậy khi \(x = 4\) thì \[T\] đạt giá trị nguyên lớn nhất.
Lời giải
1) Đối tượng thống kê là: Mặt 1 chấm, Mặt 2 chấm, Mặt 3 chấm, Mặt 4 chấm, Mặt 5 chấm, Mặt 6 chấm.
Kích thước mẫu thống kê là: 20.
Lời giải
Xét phép thử: “Chọn ngẫu nhiên một học sinh của lớp 9A”.
Tỷ lệ học sinh xếp loại học tập Khá, Tốt là \(25\% + 15\% = 40\% .\)
Gọi tổng số học sinh có xếp loại học tập Khá, Tốt là \[40k,\] số học sinh cả lớp là \[100k\,\,\left( {40k \in {\mathbb{N}^*};\,\,100k \in {\mathbb{N}^*}} \right).\]
Suy ra kích thước của không gian mẫu trong phép thử trên là \[100k.\]
Gọi \[A\] là biến cố “Chọn được học sinh có xếp loại học tập Khá hoặc Tốt” thì số kết quả thuận lợi cho biến cố A là \[40k.\]
Vì các kết quả có thể trong phép thử trên là đồng khả năng nên xác suất của biến cố \[A\] là \(P\left( A \right) = \frac{{40k}}{{100k}} = 40\% .\)
Lời giải
Gọi bán kính của khối cầu là \(r{\rm{\;(m)}},\,\,r > 0.\)
Khi đó:
⦁ Diện tích mặt cầu của khối cầu là: \[S = 4\pi {r^2}{\rm{\;(}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\]
⦁ Thể tích của khối cầu là: \(V = \frac{4}{3}\pi {r^3}{\rm{\;(}}{{\rm{m}}^3}{\rm{)}}{\rm{.}}\)
Vì giá trị diện tích mặt cầu (tính bằng m2) gấp 3 lần giá trị thể tích của khối cầu đó (tính bằng m3) nên ta có:
\(4\pi {r^2} = 3 \cdot \frac{4}{3}\pi {r^3},\) suy ra \(r = 1{\rm{\;(m)}}{\rm{.}}\)
Do đó thể tích của khối cầu là \(V = \frac{4}{3} \cdot 3,14 \cdot {1^3} = \frac{{314}}{{75}}{\rm{\;(}}{{\rm{m}}^3}{\rm{)}}{\rm{.}}\)
Vậy khối lượng của khối cầu sắt là: \(m = \frac{{314}}{{75}} \cdot 7\,\,800 = 32\,\,656\,\,({\rm{kg}}).\)
Lời giải
Gọi giá niêm yết của đôi giày và chiếc vợt lần lượt là \(x,\,\,y\) triệu đồng \[\left( {x,\,\,y > 0} \right).\]
Vì tổng số tiền theo giá niêm yết của hai mặt hàng là 2,4 triệu đồng nên ta có phương trình: \(x + y = 2,4.\)
Giá 1 đôi giày thể thao sau giảm giá là: \(x - 10\% x = 90\% x = 0,9x\) (triệu đồng).
Giá 1 chiếc vợt sau giảm giá là: \(y - 15\% y = 85\% y = 0,85y\) (triệu đồng).
Vì anh Khánh trả cho cửa hàng 3,2 triệu đồng khi mua 1 đôi giày thể thao và 2 chiếc vợt theo chương trình khuyến mại nên ta có phương trình: \(0,9x + 2 \cdot 0,85y = 3,2.\)
Ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{l}}{x + y = 2,4}\\{0,9x + 2 \cdot 0,85y = 3,2}\end{array}} \right..\)
Giải hệ phương trình trên, ta được: \(\left\{ {\begin{array}{*{20}{l}}{x = 1,1}\\{y = 1,3}\end{array}} \right.\). Các giá trị thoả mãn điều kiện.
Vậy giá niêm yết của đôi giày là 1,1 triệu đồng, của chiếc vợt là 1,3 triệu đồng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
