Câu hỏi:

24/10/2025 10 Lưu

Một cái cổng vòm hình parabol \(y = m{x^2}\,\,\left( {m < 0} \right)\) được thiết kế cao 6 mét, khoảng cách giữa hai chân cổng là 8 mét. Người ta muốn gắn một thanh sắt nằm ngang vào hai thành cổng để treo băng rôn (Hai đầu của thanh sắt được gắn tiếp giáp vào mặt trong của hai thành cổng). Hãy xác định hệ số \[m\] và cho biết nếu thanh sắt được gắn ở độ cao 4,5 mét so với mặt đất thì độ dài của thanh sắt là bao nhiêu mét?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Xét parabol \(y = m{x^2}\,\,\left( {m < 0} \right)\) trong mặt phẳng tọa đô \[Oxy\] như hình vẽ.

Một cái cổng vòm hình parabol y = mx^2( m < 0) được thiết kế cao 6 mét, (ảnh 1)

Vì Parabol nhận \[Oy\]làm trục đối xứng nên \(HB = 4\;{\rm{m}}\) hay \(OE = 4\;{\rm{m}}\)

Độ cao của cổng là 6 m nên \(OH = 6\;{\rm{m}}\) suy ra \(B\left( {4;\,\, - 6} \right)\)

Vì \(B\) thuộc parabol nên ta có \( - 6 = m \cdot {4^2}\) hay \(m = \frac{{ - 3}}{8}.\) Suy ra \(y = \frac{{ - 3}}{8}{x^2}.\)

Thanh sắt đặt nằm ngang ở độ cao \(4,5\;\;{\rm{m}}\) so với mặt đất nên ta có \(IH = 4,5\;{\rm{m}}\) suy ra \(OI = OH - IH = 6 - 4,5 = 1,5{\rm{\;(m)}}{\rm{.}}\)

Đặt \[OF = x\,\,({\rm{m}});\,\,\,x > 0.\]

Ta có \(D\left( {x; - 1,5} \right)\) thuộc parabol nên \( - 1,5 = \frac{{ - 3}}{8}{x^2}.\) Suy ra \(x = 2.\)

Hay \[ID = 2\;{\rm{m}}{\rm{.}}\] Suy ra \(CD = 4\;{\rm{m}}{\rm{.}}\)

Vậy độ dài của thanh sắt là 4 m.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

1) Thay \(x = 9\) (thoả mãn điều kiện \(x \ge 0,\,\,x \ne 1)\) vào biểu thức \[B\] ta được:

\(B = \frac{{\sqrt 9  - 1}}{{\sqrt 9  + 1}} = \frac{2}{4} = \frac{1}{2}.\)

Vậy khi \(x = 9\) thì \(B = \frac{1}{2}.\)

2) Với \(x \ge 0,\,\,x \ne 1,\) ta có:

\(A = \frac{{\sqrt x }}{{\sqrt x  - 1}} - \frac{2}{{\sqrt x  + 2}} + \frac{{4\sqrt x  + 2}}{{x + \sqrt x  - 2}}\)

 \( = \frac{{\sqrt x \left( {\sqrt x  + 2} \right)}}{{\left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 2} \right)}} - \frac{{2\left( {\sqrt x  - 1} \right)}}{{\left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 2} \right)}} + \frac{{4\sqrt x  + 2}}{{\left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 2} \right)}}\)

 \( = \frac{{x + 2\sqrt x  - 2\sqrt x  + 2 + 4\sqrt x  + 2}}{{\left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 2} \right)}}\)

 \( = \frac{{x + 4\sqrt x  + 4}}{{\left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 2} \right)}}\)

 \( = \frac{{{{\left( {\sqrt x  + 2} \right)}^2}}}{{\left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 2} \right)}} = \frac{{\sqrt x  + 2}}{{\sqrt x  - 1}}.\)

Vậy \(A = \frac{{\sqrt x  + 2}}{{\sqrt x  - 1}}.\)

3) Với \(x \ge 0,\,\,x \ne 1,\) ta có:

\(T = 4 - \frac{3}{2}AB = 4 - \frac{3}{2} \cdot \frac{{\sqrt x  + 2}}{{\sqrt x  - 1}} \cdot \frac{{\sqrt x  - 1}}{{\sqrt x  + 1}} = 4 - \frac{3}{2} \cdot \frac{{\sqrt x  + 2}}{{\sqrt x  + 1}}\)

 \[ = \frac{{4 \cdot 2\left( {\sqrt x  + 1} \right) - 3\left( {\sqrt x  + 2} \right)}}{{2\left( {\sqrt x  + 1} \right)}}\]\[ = \frac{{8\sqrt x  + 8 - 3\sqrt x  - 6}}{{2\left( {\sqrt x  + 1} \right)}}\]

 \( = \frac{{5\sqrt x  + 2}}{{2\left( {\sqrt x  + 1} \right)}} = \frac{{5\left( {\sqrt x  + 1} \right) - 3}}{{2\left( {\sqrt x  + 1} \right)}} = \frac{5}{2} - \frac{3}{{2\left( {\sqrt x  + 1} \right)}}.\)

Với \(x \ge 0,\,\,x \ne 1\) thì \(\sqrt x  + 1 > 0\) nên \(\frac{3}{{2\left( {\sqrt x  + 1} \right)}} > 0\) suy ra \(\frac{5}{2} - \frac{3}{{2\left( {\sqrt x  + 1} \right)}} < \frac{5}{2}.\)

Vì \[T\] nhận giá trị nguyên lớn nhất nên \(T = 2,\) tức là \(\frac{{5\sqrt x  + 2}}{{2\left( {\sqrt x  + 1} \right)}} = 2,\) suy ra \(5\sqrt x  + 2 = 4\sqrt x  + 4\) hay \(\sqrt x  = 2,\) ta tìm được \(x = 4\) (thoả mãn điều kiện \(x \ge 0,\,\,x \ne 1).\)

Vậy khi \(x = 4\) thì \[T\] đạt giá trị nguyên lớn nhất.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP