Câu hỏi:

24/10/2025 17 Lưu

Biểu đồ bên biểu diễn tỷ lệ xếp loại kết quả học tập của học sinh lớp 9A. Tính xác suất của biến cố: “Chọn được học sinh có kết quả xếp loại học tập Khá hoặc Tốt” khi chọn ngẫu nhiên một học sinh của lớp đó.
Biểu đồ bên biểu diễn tỷ lệ xếp loại kết quả học tập của học sinh lớp 9A. (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Xét phép thử: “Chọn ngẫu nhiên một học sinh của lớp 9A”.

Tỷ lệ học sinh xếp loại học tập Khá, Tốt là \(25\%  + 15\%  = 40\% .\)

Gọi tổng số học sinh có xếp loại học tập Khá, Tốt là \[40k,\] số học sinh cả lớp là \[100k\,\,\left( {40k \in {\mathbb{N}^*};\,\,100k \in {\mathbb{N}^*}} \right).\]

Suy ra kích thước của không gian mẫu trong phép thử trên là \[100k.\]

Gọi \[A\] là biến cố “Chọn được học sinh có xếp loại học tập Khá hoặc Tốt” thì số kết quả thuận lợi cho biến cố A là \[40k.\]

Vì các kết quả có thể trong phép thử trên là đồng khả năng nên xác suất của biến cố \[A\] là \(P\left( A \right) = \frac{{40k}}{{100k}} = 40\% .\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

1) Thay \(x = 9\) (thoả mãn điều kiện \(x \ge 0,\,\,x \ne 1)\) vào biểu thức \[B\] ta được:

\(B = \frac{{\sqrt 9  - 1}}{{\sqrt 9  + 1}} = \frac{2}{4} = \frac{1}{2}.\)

Vậy khi \(x = 9\) thì \(B = \frac{1}{2}.\)

2) Với \(x \ge 0,\,\,x \ne 1,\) ta có:

\(A = \frac{{\sqrt x }}{{\sqrt x  - 1}} - \frac{2}{{\sqrt x  + 2}} + \frac{{4\sqrt x  + 2}}{{x + \sqrt x  - 2}}\)

 \( = \frac{{\sqrt x \left( {\sqrt x  + 2} \right)}}{{\left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 2} \right)}} - \frac{{2\left( {\sqrt x  - 1} \right)}}{{\left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 2} \right)}} + \frac{{4\sqrt x  + 2}}{{\left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 2} \right)}}\)

 \( = \frac{{x + 2\sqrt x  - 2\sqrt x  + 2 + 4\sqrt x  + 2}}{{\left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 2} \right)}}\)

 \( = \frac{{x + 4\sqrt x  + 4}}{{\left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 2} \right)}}\)

 \( = \frac{{{{\left( {\sqrt x  + 2} \right)}^2}}}{{\left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 2} \right)}} = \frac{{\sqrt x  + 2}}{{\sqrt x  - 1}}.\)

Vậy \(A = \frac{{\sqrt x  + 2}}{{\sqrt x  - 1}}.\)

3) Với \(x \ge 0,\,\,x \ne 1,\) ta có:

\(T = 4 - \frac{3}{2}AB = 4 - \frac{3}{2} \cdot \frac{{\sqrt x  + 2}}{{\sqrt x  - 1}} \cdot \frac{{\sqrt x  - 1}}{{\sqrt x  + 1}} = 4 - \frac{3}{2} \cdot \frac{{\sqrt x  + 2}}{{\sqrt x  + 1}}\)

 \[ = \frac{{4 \cdot 2\left( {\sqrt x  + 1} \right) - 3\left( {\sqrt x  + 2} \right)}}{{2\left( {\sqrt x  + 1} \right)}}\]\[ = \frac{{8\sqrt x  + 8 - 3\sqrt x  - 6}}{{2\left( {\sqrt x  + 1} \right)}}\]

 \( = \frac{{5\sqrt x  + 2}}{{2\left( {\sqrt x  + 1} \right)}} = \frac{{5\left( {\sqrt x  + 1} \right) - 3}}{{2\left( {\sqrt x  + 1} \right)}} = \frac{5}{2} - \frac{3}{{2\left( {\sqrt x  + 1} \right)}}.\)

Với \(x \ge 0,\,\,x \ne 1\) thì \(\sqrt x  + 1 > 0\) nên \(\frac{3}{{2\left( {\sqrt x  + 1} \right)}} > 0\) suy ra \(\frac{5}{2} - \frac{3}{{2\left( {\sqrt x  + 1} \right)}} < \frac{5}{2}.\)

Vì \[T\] nhận giá trị nguyên lớn nhất nên \(T = 2,\) tức là \(\frac{{5\sqrt x  + 2}}{{2\left( {\sqrt x  + 1} \right)}} = 2,\) suy ra \(5\sqrt x  + 2 = 4\sqrt x  + 4\) hay \(\sqrt x  = 2,\) ta tìm được \(x = 4\) (thoả mãn điều kiện \(x \ge 0,\,\,x \ne 1).\)

Vậy khi \(x = 4\) thì \[T\] đạt giá trị nguyên lớn nhất.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP