Đề thi tuyển sinh vào lớp 10 môn Toán Sở GD&ĐT Trà Vinh năm học 2025-2026 có đáp án
63 người thi tuần này 4.6 63 lượt thi 9 câu hỏi 45 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
Đề KSCL THCS Văn Quán - HN_năm học 2025-2026_Tháng 12 có đáp án
Đề KSCL THCS Phú Diễn - HN_năm học 2025-2026_Tháng 12 có đáp án
Đề KSCL THCS Lê Lợi - HN_năm học 2025-2026_Tháng 12 có đáp án
Đề KSCL THCS Thịnh Quang - HN_năm học 2025-2026_Tháng 9 có đáp án
Đề thi tuyển sinh vào lớp 10 môn Toán Sở GD&ĐT Đắk Nông năm học 2025-2026 có đáp án
Đề thi tuyển sinh vào lớp 10 môn Toán Sở GD&ĐT Bắc Kạn năm học 2025-2026 có đáp án
Đề thi tuyển sinh vào lớp 10 môn Toán Sở GD&ĐT Đắk Lắk năm học 2025-2026 có đáp án
Đề thi tuyển sinh vào lớp 10 môn Toán Sở GD&ĐT Long An năm học 2025-2026 có đáp án
Danh sách câu hỏi:
Lời giải
Lời giải
\(\left\{ \begin{array}{l}3x + 2y = 11\\x - 2y = 1\end{array} \right.\)
\(\left\{ \begin{array}{l}4x = 12\\x - 2y = 1\end{array} \right.\)
\(\left\{ \begin{array}{l}x = 3\\x - 2y = 1\end{array} \right.\)
\(\left\{ \begin{array}{l}x = 3\\3 - 2y = 1\end{array} \right.\)
\(\left\{ \begin{array}{l}x = 3\\2y = 2\end{array} \right.\)
\(\left\{ \begin{array}{l}x = 3\\y = 1\end{array} \right.\) .
Vậy hệ phương trình có cặp nghiệm \(\left( {x\,;y} \right)\)là \(\left( {3\,\,;\,\,1} \right)\)
Lời giải
|
Ta có bảng giá trị sau:
Suy ra đồ thị hàm số là đường cong parabol đi qua các điểm \[\left( { - 2\,;4} \right),\left( { - 1\,;\,1} \right),\left( {0\,;0} \right),\left( {1\,;2} \right),\left( {2\,;4} \right).\] |
|
Lời giải
a. Phương tiện nào được các bạn sử dụng nhiều nhất là xe đạp điện. Phương tiện nào được các bạn sử dụng ít nhất là xe máy dưới \(50\) phân khối.
b. Số học sinh Lan Hương đã thực hiện khảo sát là:
\(36 + 54 + 25 + 30 + 5 = 150\) (học sinh)
Lời giải
Không gian mẫu \(\Omega = \{ 1;2;3;4;5;6;7;8;9;10\} \).
Số phần tử của không gian mẫu là \(n(\Omega ) = 10\).
Các kết quả thuận lợi cho biến cố A là lấy ra quả bóng ghi số \[1;3;\,\,5;7;\,9\] suy ra \(n(A) = 5\)
Vậy xác suất của biến cố A là \(p(A) = \frac{{n(A)}}{{n(\Omega )}} = \frac{5}{{10}} = \frac{1}{2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



