Đề thi tuyển sinh vào lớp 10 môn Toán năm 2023-2024 Chuyên Tây Ninh có đáp án
39 người thi tuần này 4.6 39 lượt thi 9 câu hỏi 45 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
Đề thi tuyển sinh vào lớp 10 môn Toán Sở GD&ĐT Sơn La năm học 2025-2026 có đáp án
Đề thi tuyển sinh vào lớp 10 môn Toán Sở GD&ĐT Kiên Giang năm học 2025-2026 có đáp án
Đề thi tuyển sinh vào lớp 10 môn Toán Sở GD&ĐT Gia Lai năm học 2025-2026 có đáp án
Đề thi tuyển sinh vào lớp 10 môn Toán chuyên năm 2021-2022 sở GD&ĐT Hà Nam có đáp án
Danh sách câu hỏi:
Lời giải
Ta có: \(T = \sqrt {13 + 4\sqrt 3 } - \sqrt {13 - 4\sqrt 3 } = \sqrt {12 + 2.2\sqrt 3 .1 + 1} - \sqrt {12 - 2.2\sqrt 3 .1 + 1} \)
\( = \sqrt {{{(2\sqrt 3 + 1)}^2}} - \sqrt {{{(2\sqrt 3 - 1)}^2}} = \left| {2\sqrt 3 + 1\left| - \right|2\sqrt 3 - 1} \right| = 2\sqrt 3 + 1 - 2\sqrt 3 + 1 = 2\)
Lời giải
Do \(\left( {{d_1}} \right)\) và \(\left( {{d_2}} \right)\) cùng đi qua điểm \(M\left( {2; - 3} \right)\) nên ta có: \(\left\{ {\begin{array}{*{20}{l}}{2a + 5 = - 3}\\{6 + b - 2 = - 3}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = - 4}\\{b = - 7}\end{array}} \right.} \right.\).
Vậy \(a = - 4;b = - 7\)
Lời giải
Kẻ \(AH \bot CD\).
Suy ra: \(ABCH\) là hình chữ nhật\( \Rightarrow AH = 4{\rm{\;}}cm;HD = CD - CH = 3{\rm{\;}}cm\).
Xét \({\rm{\Delta }}AHD\left( {\hat H = {{90}^ \circ }} \right)\) có: \(A{D^2} = A{H^2} + H{D^2} = {4^2} + {3^2} = 25 \Rightarrow AD = 5{\rm{\;}}cm\).
Xét \({\rm{\Delta }}ADE\left( {\widehat {ADE} = {{90}^ \circ }} \right)\) có: \(cos{30^ \circ } = \frac{{AD}}{{AE}} \Rightarrow AE = \frac{{AD}}{{cos{{30}^ \circ }}} = \frac{{10}}{{\sqrt 3 }} = \frac{{10\sqrt 3 }}{3}\).
Vậy \(AE = \frac{{10\sqrt 3 }}{3}\)
Lời giải
Đặt: \(\frac{{2a}}{b} = \frac{{3b}}{c} = \frac{c}{{6a}} = t \Rightarrow \left\{ {\begin{array}{*{20}{l}}{2a = bt}\\{b = \frac{c}{3}t = 2a{t^2} \Leftrightarrow 2a = 2a{t^3} \Leftrightarrow t = 1.}\\{c = 6at}\end{array}} \right.\)
Suy ra: \(\left\{ {\begin{array}{*{20}{l}}{b = 2a}\\{c = 6a}\end{array}} \right.\).
\(P = \frac{{4ac - cb}}{{bc + 2ab}} = \frac{{4a.6a - 6a.2a}}{{2a.6a + 2a.2a}} = \frac{{12}}{{16}} = \frac{3}{4}\)
Lời giải
\({\left( {x + y} \right)^2} + 2{y^2}\left( {x + 1} \right) + {\left( {y + 2} \right)^2} - 9 = 0\left( {\rm{*}} \right)\)
\( \Leftrightarrow {x^2} + {y^2} + 2xy + 2x{y^2} + 2{y^2} + {y^2} + 4y + 4 - 9 = 0\)
\( \Leftrightarrow {x^2} - 4 + 2x\left( {{y^2} + y} \right) + 4\left( {{y^2} + y} \right) = 1\)
\( \Leftrightarrow \left( {x + 2} \right)\left( {x - 2} \right) + 2\left( {{y^2} + y} \right)\left( {x + 2} \right) = 1\)
\( \Leftrightarrow \left( {x + 2} \right)\left( {x - 2 + 2{y^2} + 2y} \right) = 1\)
TH1: \(\left\{ {\begin{array}{*{20}{c}}{x + 2 = 1}\\{x - 2 + 2{y^2} + 2y = 1}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = - 1}\\{2{y^2} + 2y = 4}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = - 1}\\{\left[ {\begin{array}{*{20}{c}}{y = 1}\\{y = - 2}\end{array}} \right.}\end{array}} \right. \Rightarrow \left( { - 1;1} \right),{\rm{\;}}\left( { - 1;{\rm{\;}} - 2} \right)\)
TH2: \(\left\{ {\begin{array}{*{20}{c}}{x + 2 = 1}\\{x - 2 + 2{y^2} + 2y = 1}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = - 3}\\{2{y^2} + 2y = 4}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = - 3}\\{\left[ {\begin{array}{*{20}{c}}{y = 1}\\{y = - 2}\end{array}} \right.}\end{array}} \right. \Rightarrow \left( { - 3;1} \right),{\rm{\;}}\left( { - 3;{\rm{\;}} - 2} \right)\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
