Cho \(a,b,c\) là các số thực dương thỏa mãn \(a + b + c \ge 6\). Tìm giá trị nhỏ nhất của biểu thức \(M = \frac{1}{6}\left( {19a + 22b + 25c} \right) + 2\left( {\frac{5}{a} + \frac{6}{b} + \frac{7}{c}} \right)\).
Cho \(a,b,c\) là các số thực dương thỏa mãn \(a + b + c \ge 6\). Tìm giá trị nhỏ nhất của biểu thức \(M = \frac{1}{6}\left( {19a + 22b + 25c} \right) + 2\left( {\frac{5}{a} + \frac{6}{b} + \frac{7}{c}} \right)\).
Quảng cáo
Trả lời:
Ta có: \(a + b + c \ge 6\).
\(M = \frac{1}{6}\left( {19a + 22b + 25c} \right) + 2\left( {\frac{5}{a} + \frac{6}{b} + \frac{7}{c}} \right) = \left( {\frac{{19}}{6}a + \frac{{10}}{a}} \right) + \left( {\frac{{22}}{6}b + \frac{{12}}{b}} \right) + \left( {\frac{{25}}{6}c + \frac{{14}}{c}} \right)\)
Xét \(k,m,n > 0:ka + \frac{{10}}{a} \ge 2\sqrt {10k} ;mb + \frac{{12}}{b} \ge 2\sqrt {12m} ;nc + \frac{{14}}{c} \ge 2\sqrt {14n} \)
\(a = 2 \Rightarrow 2k + 5 \ge 2\sqrt {10k} \)
Dấu bằng xảy ra \( \Leftrightarrow ka = \frac{{10}}{a} \Rightarrow 2k = 5 \Leftrightarrow k = \frac{5}{2}\).
Tương tự ta tìm được: \(m = 3,n = \frac{7}{2}\).
Do đó: \(M = \left( {\frac{5}{2}a + \frac{{10}}{a}} \right) + \left( {3b + \frac{{12}}{b}} \right) + \left( {\frac{7}{2}c + \frac{{14}}{c}} \right) + \frac{2}{3}a + \frac{2}{3}b + \frac{2}{3}c\)
\( \Rightarrow M \ge 2\sqrt {25} + 2\sqrt {36} + 2\sqrt {49} + \frac{2}{3} \cdot 6 = 40\).
Dấu bằng xảy ra khi \(a = b = c = 2\).
Vậy \({M_{Min}} = 40\) khi \(a = b = c = 2\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: \(T = \sqrt {13 + 4\sqrt 3 } - \sqrt {13 - 4\sqrt 3 } = \sqrt {12 + 2.2\sqrt 3 .1 + 1} - \sqrt {12 - 2.2\sqrt 3 .1 + 1} \)
\( = \sqrt {{{(2\sqrt 3 + 1)}^2}} - \sqrt {{{(2\sqrt 3 - 1)}^2}} = \left| {2\sqrt 3 + 1\left| - \right|2\sqrt 3 - 1} \right| = 2\sqrt 3 + 1 - 2\sqrt 3 + 1 = 2\)
Lời giải
Đặt: \(\frac{{2a}}{b} = \frac{{3b}}{c} = \frac{c}{{6a}} = t \Rightarrow \left\{ {\begin{array}{*{20}{l}}{2a = bt}\\{b = \frac{c}{3}t = 2a{t^2} \Leftrightarrow 2a = 2a{t^3} \Leftrightarrow t = 1.}\\{c = 6at}\end{array}} \right.\)
Suy ra: \(\left\{ {\begin{array}{*{20}{l}}{b = 2a}\\{c = 6a}\end{array}} \right.\).
\(P = \frac{{4ac - cb}}{{bc + 2ab}} = \frac{{4a.6a - 6a.2a}}{{2a.6a + 2a.2a}} = \frac{{12}}{{16}} = \frac{3}{4}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
