Cho \(a,b,c\) là ba số thực khác 0 thỏa mãn \(\frac{{2a}}{b} = \frac{{3b}}{c} = \frac{c}{{6a}}\). Tính giá trị của biểụ thức \(P = \frac{{4ac - cb}}{{bc + 2ab}}\)
Cho \(a,b,c\) là ba số thực khác 0 thỏa mãn \(\frac{{2a}}{b} = \frac{{3b}}{c} = \frac{c}{{6a}}\). Tính giá trị của biểụ thức \(P = \frac{{4ac - cb}}{{bc + 2ab}}\)
Quảng cáo
Trả lời:
Đặt: \(\frac{{2a}}{b} = \frac{{3b}}{c} = \frac{c}{{6a}} = t \Rightarrow \left\{ {\begin{array}{*{20}{l}}{2a = bt}\\{b = \frac{c}{3}t = 2a{t^2} \Leftrightarrow 2a = 2a{t^3} \Leftrightarrow t = 1.}\\{c = 6at}\end{array}} \right.\)
Suy ra: \(\left\{ {\begin{array}{*{20}{l}}{b = 2a}\\{c = 6a}\end{array}} \right.\).
\(P = \frac{{4ac - cb}}{{bc + 2ab}} = \frac{{4a.6a - 6a.2a}}{{2a.6a + 2a.2a}} = \frac{{12}}{{16}} = \frac{3}{4}\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: \(T = \sqrt {13 + 4\sqrt 3 } - \sqrt {13 - 4\sqrt 3 } = \sqrt {12 + 2.2\sqrt 3 .1 + 1} - \sqrt {12 - 2.2\sqrt 3 .1 + 1} \)
\( = \sqrt {{{(2\sqrt 3 + 1)}^2}} - \sqrt {{{(2\sqrt 3 - 1)}^2}} = \left| {2\sqrt 3 + 1\left| - \right|2\sqrt 3 - 1} \right| = 2\sqrt 3 + 1 - 2\sqrt 3 + 1 = 2\)
Lời giải
Do \(\left( {{d_1}} \right)\) và \(\left( {{d_2}} \right)\) cùng đi qua điểm \(M\left( {2; - 3} \right)\) nên ta có: \(\left\{ {\begin{array}{*{20}{l}}{2a + 5 = - 3}\\{6 + b - 2 = - 3}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = - 4}\\{b = - 7}\end{array}} \right.} \right.\).
Vậy \(a = - 4;b = - 7\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
