Câu hỏi:

24/12/2025 31 Lưu

Cho hình phẳng có số liệu như hình vẽ. Tính độ dài đoạn thẳng \(AE\).

Cho hình phẳng có số liệu như hình vẽ. Tính độ dài đoạn thẳng \(AE\). (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Kẻ \(AH \bot CD\).

Suy ra: \(ABCH\) là hình chữ nhật\( \Rightarrow AH = 4{\rm{\;}}cm;HD = CD - CH = 3{\rm{\;}}cm\).

Xét \({\rm{\Delta }}AHD\left( {\hat H = {{90}^ \circ }} \right)\) có: \(A{D^2} = A{H^2} + H{D^2} = {4^2} + {3^2} = 25 \Rightarrow AD = 5{\rm{\;}}cm\).

Xét \({\rm{\Delta }}ADE\left( {\widehat {ADE} = {{90}^ \circ }} \right)\) có: \(cos{30^ \circ } = \frac{{AD}}{{AE}} \Rightarrow AE = \frac{{AD}}{{cos{{30}^ \circ }}} = \frac{{10}}{{\sqrt 3 }} = \frac{{10\sqrt 3 }}{3}\).

Vậy \(AE = \frac{{10\sqrt 3 }}{3}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đặt: \(\frac{{2a}}{b} = \frac{{3b}}{c} = \frac{c}{{6a}} = t \Rightarrow \left\{ {\begin{array}{*{20}{l}}{2a = bt}\\{b = \frac{c}{3}t = 2a{t^2} \Leftrightarrow 2a = 2a{t^3} \Leftrightarrow t = 1.}\\{c = 6at}\end{array}} \right.\)

Suy ra: \(\left\{ {\begin{array}{*{20}{l}}{b = 2a}\\{c = 6a}\end{array}} \right.\).

\(P = \frac{{4ac - cb}}{{bc + 2ab}} = \frac{{4a.6a - 6a.2a}}{{2a.6a + 2a.2a}} = \frac{{12}}{{16}} = \frac{3}{4}\)

Lời giải

Ta có: \(a + b + c \ge 6\).

        \(M = \frac{1}{6}\left( {19a + 22b + 25c} \right) + 2\left( {\frac{5}{a} + \frac{6}{b} + \frac{7}{c}} \right) = \left( {\frac{{19}}{6}a + \frac{{10}}{a}} \right) + \left( {\frac{{22}}{6}b + \frac{{12}}{b}} \right) + \left( {\frac{{25}}{6}c + \frac{{14}}{c}} \right)\)

Xét \(k,m,n > 0:ka + \frac{{10}}{a} \ge 2\sqrt {10k} ;mb + \frac{{12}}{b} \ge 2\sqrt {12m} ;nc + \frac{{14}}{c} \ge 2\sqrt {14n} \)

\(a = 2 \Rightarrow 2k + 5 \ge 2\sqrt {10k} \)

Dấu bằng xảy ra \( \Leftrightarrow ka = \frac{{10}}{a} \Rightarrow 2k = 5 \Leftrightarrow k = \frac{5}{2}\).

Tương tự ta tìm được: \(m = 3,n = \frac{7}{2}\).

Do đó: \(M = \left( {\frac{5}{2}a + \frac{{10}}{a}} \right) + \left( {3b + \frac{{12}}{b}} \right) + \left( {\frac{7}{2}c + \frac{{14}}{c}} \right) + \frac{2}{3}a + \frac{2}{3}b + \frac{2}{3}c\)

\( \Rightarrow M \ge 2\sqrt {25}  + 2\sqrt {36}  + 2\sqrt {49}  + \frac{2}{3} \cdot 6 = 40\).

Dấu bằng xảy ra khi \(a = b = c = 2\).

Vậy \({M_{Min}} = 40\) khi \(a = b = c = 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP