Ôn thi Cấp tốc 789+ vào 10 môn Toán khu vực Hà Nội 2024 - 2025 (Đề 11)
42 người thi tuần này 4.6 352 lượt thi 5 câu hỏi 90 phút
🔥 Đề thi HOT:
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Đắk Lắk
Đề thi thử TS vào 10 (Tháng 1) năm học 2025 - 2026_Môn Toán_THCS Cầu Giấy_Quận Cầu Giấy
Đề thi tham khảo môn Toán vào 10 tỉnh Quảng Bình năm học 2025-2026
Đề thi tham khảo TS vào 10 năm học 2025 - 2026_Môn Toán_TP Phú Thọ
54 bài tập Hàm số bậc hai và giải bài toán bằng cách lập phương trình có lời giải
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_TP Hà Nội
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
1) Thay \(x = 16\) (thỏa mãn) vào biểu thức \(A,\) ta có: \({\rm{\;}}A = \frac{{16}}{{\sqrt {16} - 3}} = \frac{{16}}{{4 - 3}} = 16.\)
Vậy giá trị của \(A = 16\) khi \(x = 16.\)
2) Với \(x > 0,\,\,x \ne 9,\) ta có:
\(B = \frac{{2x - 3}}{{x - 3\sqrt x }} - \frac{1}{{\sqrt x }}\)\( = \frac{{2x - 3}}{{\sqrt x \left( {\sqrt x - 3} \right)}} - \frac{{\sqrt x - 3}}{{\sqrt x \left( {\sqrt x - 3} \right)}}\)\( = \frac{{2x - 3 - \sqrt x + 3}}{{\sqrt x \left( {\sqrt x - 3} \right)}}\)
\( = \frac{{2x - \sqrt x }}{{\sqrt x \left( {\sqrt x - 3} \right)}}\)\( = \frac{{\sqrt x \left( {2\sqrt x - 1} \right)}}{{\sqrt x \left( {\sqrt x - 3} \right)}}\)\( = \frac{{2\sqrt x - 1}}{{\sqrt x - 3}}.\)
Vậy với \(x > 0,\,\,x \ne 9\) thì \(B = \frac{{2\sqrt x - 1}}{{\sqrt x - 3}}.\)
3) Với \(x > 0,\,\,x \ne 9,\) ta có: \(A - B = \frac{x}{{\sqrt x - 3}} - \frac{{2\sqrt x - 1}}{{\sqrt x - 3}}\)\( = \frac{{x - 2\sqrt x + 1}}{{\sqrt x - 3}}\)\( = \frac{{{{\left( {\sqrt x - 1} \right)}^2}}}{{\sqrt x - 3}}.\)
Để \(A - B < 0\) thì \(\frac{{{{\left( {\sqrt x - 1} \right)}^2}}}{{\sqrt x - 3}} < 0.\,\,\,\left( * \right)\)
Ta có \({\left( {\sqrt x - 1} \right)^2} \ge 0\) với mọi \(x \ge 0.\)
Do đó từ \(\left( * \right)\) suy ra \(\left\{ {\begin{array}{*{20}{l}}{\sqrt x - 1 \ne 0}\\{\sqrt x - 3 < 0}\end{array}} \right.\) hay \(\left\{ {\begin{array}{*{20}{l}}{\sqrt x \ne 1}\\{\sqrt x < 3}\end{array}} \right.\) nên \(\left\{ {\begin{array}{*{20}{l}}{x \ne 1}\\{x < 9.}\end{array}} \right.\)
Kết hợp điều kiện \(x > 0,\,\,x \ne 9,\) ta có: \(0 < x < 9,\,\,x \ne 1.\)
Vậy \(0 < x < 9,\,\,x \ne 1\) thì \(A - B < 0.\)
Lời giải
1) Gọi số xe tải loại lớn mà đội vận chuyển sử dụng là \(x\) (xe) \(\left( {x \in \mathbb{N}*} \right).\)
Số xe tải loại nhỏ mà đội cần sử dụng theo kế hoạch là \(x + 2\) (xe).
Mỗi xe tải loại lớn vận chuyển được là \(\frac{{15}}{x}\) (tấn).
Mỗi xe tải loại nhỏ theo kế hoạch vận chuyển được là \(\frac{{15}}{{x + 2}}\) (tấn).
Theo bài, mỗi xe tải lớn chở nhiều hơn mỗi xe tải loại nhỏ 2 tấn nên ta có phương trình:
\(\frac{{15}}{x} - \frac{{15}}{{x + 2}} = 2\)
\(15\left( {x + 2} \right) - 15x = 2x\left( {x + 2} \right)\)
\(15x + 30 - 15x = 2{x^2} + 4x\)
\(2{x^2} + 4x - 30 = 0\)
\(x = 3\) hoặc \(x = - 5.\)
Ta thấy chỉ có giá trị \(x = 3\) thỏa mãn điều kiện.
Vậy xe tải loại lớn mà đội vận chuyển cần dùng là \(3\) xe.
2) Diện tích xung quanh của bình đựng nước là:
\({S_4} = 2\pi rh = 2\pi \cdot 4 \cdot 25 = 200\pi \approx 628{\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\)
Vậy diện tích xung quanh của bình đựng nước khoảng \(628{\rm{\;c}}{{\rm{m}}^2}.\)
Lời giải
1) \(\left\{ {\begin{array}{*{20}{l}}{\sqrt {3x + 1} + 2y = 4\,\,\,\,\left( 1 \right)}\\{3\sqrt {3x + 1} - y = 5\,\,\,\,\left( 2 \right)}\end{array}} \right.\)
Điều kiện \(x \ge - \frac{1}{3}.\)
Nhân hai vế của phương trình \(\left( 2 \right)\) với \(2,\) ta được hệ phương trình: \(\left\{ {\begin{array}{*{20}{l}}{\sqrt {3x + 1} + 2y = 4}\\{6\sqrt {3x + 1} - 2y = 10.}\end{array}} \right.\)
Cộng từng vế hai phương trình của hệ phương trình trên, ta được:
\(7\sqrt {3x + 1} = 14,\) suy ra \(\sqrt {3x + 1} = 2\) nên \(3x + 1 = 4,\) do đó \(x = 1\) (thỏa mãn \(x \ge - \frac{1}{3}).\)
Thay \(\sqrt {3x + 1} = 2\) vào phương trình \(\left( 1 \right),\) ta được:
\(2 + 2y = 4,\) do đó \(y = 1.\)
Vậy hệ phương trình có nghiệm duy nhất là \[\left( {1;\,\,1} \right).\]
2) a) Xét phương trình hoành độ giao điểm của \[\left( d \right)\] và \(\left( P \right)\) là:
\({x^2} = \left( {m - 2} \right)x + 5\) hay \({x^2} - \left( {m - 2} \right)x - 5 = 0\)
Phương trình trên có \({\rm{\Delta }} = \left[ { - {{\left( {m - 2} \right)}^2}} \right] - 4 \cdot 1 \cdot \left( { - 5} \right)\)\( = {\left( {m - 2} \right)^2} + 20 > 0\) với mọi \(m \in \mathbb{R}.\)
Do đó phương trình trên luôn có hai nghiệm phân biệt.
Vậy \[\left( d \right)\] luôn cắt \[\left( P \right)\] tại hai điểm phân biệt.
b) Theo định lí Viète, ta có: \[\left\{ {\begin{array}{*{20}{l}}{{x_1} + {x_2} = m - 2}\\{{x_1}{x_2} = - 5.}\end{array}} \right.\]
Theo bài, \({x_1} + 5{x_2} = 0\) nên suy ra \({x_1} = - 5{x_2}.\)
Kết hợp với \[{x_1}{x_2} = - 5,\] ta được: \( - 5{x_2} \cdot {x_2} = - 5,\) hay \(x_2^2 = 1,\) nên \({x_2} = 1\) hoặc \({x_2} = - 1.\)
Trường hợp 1. \({x_2} = 1,\) suy ra \({x_1} = - 5,\) kết hợp với \[{x_1} + {x_2} = m - 2,\] ta được:
\( - 5 + 1 = m - 2,\) do đó \(m = - 2.\)
Trường hợp 2. \({x_2} = - 1,\) suy ra \({x_1} = 5,\) kết hợp với \[{x_1} + {x_2} = m - 2,\] ta được:
\(5 + \left( { - 1} \right) = m - 2,\) do đó \(m = 6.\)
Vậy \(m \in \left\{ { - 2;6} \right\}\) là giá trị cần tìm.
Lời giải

1) Vì \(AB,\,\,AC\) là các tiếp tuyến của đường tròn \(\left( O \right)\) nên \[\widehat {ABO} = \widehat {ACO} = 90^\circ .\]
Do đó hai điểm \(B,\,\,C\) cùng nằm trên đường tròn đường kính \(AO.\)
Vậy tứ giác \(ABOC\) là tứ giác nội tiếp đường tròn đường kính \(AO.\)
2) ⦁ Ta có \(BD\) là đường kính của đường tròn \(\left( O \right)\) nên \(\widehat {BED} = 90^\circ .\)
Xét \(\Delta ABE\) vuông tại \(E,\) ta có: \(\cos \widehat {BAE} = \frac{{AE}}{{AB}}.\)
Xét \(\Delta ABD\) vuông tại \(B,\) ta có: \(\cos \widehat {BAD} = \frac{{AB}}{{AD}}.\)
Do đó \[\frac{{AE}}{{AB}} = \frac{{AB}}{{AD}}\] hay \(A{B^2} = AE \cdot AD.\)
Lại có \(AB = AC\) (tính chất hai tiếp tuyến \(AB,\,\,AC\) của đường tròn \(\left( O \right)\) cắt nhau tại \(A)\) và \(OB = OC\) nên đường thẳng \(AO\) là trung trực của đoạn thẳng \(BC.\) Do đó \(AO \bot BC.\)
Chứng minh tương tự như trên ta cũng có:
\(\frac{{AB}}{{AO}} = \cos \widehat {BAO} = \cos \widehat {BAH} = \frac{{AH}}{{AB}},\) suy ra \(A{B^2} = AH \cdot AO.\)
Vậy \(A{B^2} = AE \cdot AD = AH \cdot AO.\)
⦁ Chứng minh tương tự như trên, ta cũng có:
\(OH{\rm{\;}} \cdot OA = O{B^2} = O{D^2}\) hay \(\frac{{OD}}{{OA}} = \frac{{OH}}{{OD}}.\)
Xét \(\Delta ODH\) và \(\Delta OAD\) có: \(\widehat {AOD}\) là góc chung và \(\frac{{OD}}{{OA}} = \frac{{OH}}{{OD}}.\)
Do đó (c.g.c). Suy ra \(\widehat {HDO} = \widehat {DAO}\) (hai góc tương ứng). (1)
Ta có \(\widehat {AHB} = \widehat {AEB} = 90^\circ \) nên hai điểm \(H,\,\,E\) cùng nằm trên đường tròn đường kính \(AB.\)
Do đó tứ giác \(ABHE\) nội tiếp đường tròn đường kính \(AB.\)
Suy ra \(\widehat {EBH} = \widehat {EAH}\) (hai góc nội tiếp cùng chắn cung \(EH).\) Hay \(\widehat {HBE} = \widehat {DAO}.\,\,\left( 2 \right)\)
Từ (1) và (2) suy ra \(\widehat {HDO} = \widehat {HBE}.\)
3) Gọi \(K\) là giao điểm của \(BE\) và \(MN.\)
Ta có \(BD\,{\rm{//}}\,MN\) (cùng vuông góc với \(AB)\) nên \(\widehat {DBM} = \widehat {BMN}\) (hai góc so le trong).
Xét \(\Delta BHD\) và \(\Delta MKB\) có \(\widehat {DBH} = \widehat {BMK},\,\,\widehat {BDH} = \widehat {KBM}\)
Do đó (g.g), suy ra \(\frac{{BH}}{{MK}} = \frac{{BD}}{{MB}}.\,\,\,\left( 3 \right)\)
Xét \(\Delta BCD\) và \(\Delta MNB\) có \(\widehat {BCD} = \widehat {MNB} = 90^\circ \) và \(\widehat {CBD} = \widehat {BMN}\)
Do đó (g.g), suy ra \(\frac{{BC}}{{MN}} = \frac{{BD}}{{MB}}.\,\,\,\,\left( 4 \right)\)
Từ (3) và (4) suy ra \(\frac{{BH}}{{MK}} = \frac{{BC}}{{MN}},\) nên \(\frac{{BH}}{{BC}} = \frac{{MK}}{{MN}}.\)
Do \(OA\) là đường trung trực của \(BC\) nên \(H\) là trung điểm của \(BC,\) suy ra \(BH = \frac{1}{2}BC\) hay \(\frac{{BH}}{{BC}} = \frac{1}{2}\) nên \(\frac{{MK}}{{MN}} = \frac{1}{2},\) do đó \(K\) là trung điểm của \(MN.\)
Lời giải
Với \(x > 0,\,\,y > 0\) ta có:
\({\left( {x - y} \right)^2} \ge 0\)
\({\left( {x + y} \right)^2} \ge 4xy = 4\left[ {3 - \left( {x + y} \right)} \right]{\rm{ }}\)
\({\left( {x + y} \right)^2} + 4\left( {x + y} \right) - 12 \ge 0\)
\(\left( {x + y + 6} \right)\left( {x + y - 2} \right) \ge 0\)
Mà \(x,\,\,y\) là các số dương nên \(x + y + 6 > 0.\) Do đó \(x + y \ge 2.\)
Từ đó \(P = \frac{3}{{x + y}} + x + y - 3 = \frac{4}{{x + y}} + \left( {x + y} \right) - \frac{1}{{x + y}} - 3\)
\[\mathop \ge \limits^{{\rm{B\ST Cauchy}}} \]\[2\sqrt {\frac{4}{{x + y}} \cdot \left( {x + y} \right)} - \frac{1}{{x + y}} - 3 = 1 - \frac{1}{{x + y}}\]
\( \ge 1 - \frac{1}{2} = \frac{1}{2}.\)
Vậy giá trị nhỏ nhất của \(P\) là \(\frac{1}{2}\) khi \(x = y = 1.\)