Câu hỏi:

29/08/2024 55

Từ điểm \(A\) nằm bên ngoài đường tròn \(\left( O \right),\) kẻ hai tiếp tuyến \(AB,\,\,AC\) với đường tròn \(\left( O \right)\) \((B,\,\,C\) là hai tiếp điểm).

1) Chứng minh tứ giác \(ABOC\) là tứ giác nội tiếp.

2) Vẽ đường kính \(BD\) của đường tròn \(\left( O \right).\) Gọi \(E\) là giao điểm thứ hai của đường thẳng \(AD\) và đường tròn \(\left( O \right).\) Đường thẳng \(BC\) và đường thẳng \(AO\) cắt nhau tại \(H.\) Chứng minh \(A{B^2} = AE \cdot AD = AH \cdot AO\) và \(\widehat {HDO} = \widehat {HBE}.\)

3) Lấy điểm \(M\) thuộc tia đối của tia \(CB.\) Gọi \(N\) là chân đường vuông góc kẻ từ điểm \(M\) đến đường thẳng \(AB.\) Chứng minh đường thẳng \(BE\) đi qua trung điểm của đoạn thẳng \(MN.\)
 

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Từ điểm A nằm bên ngoài đường tròn O kẻ hai tiếp tuyến (AB, AC) với đường tròn O B, C là hai tiếp điểm). (ảnh 1)

1) Vì \(AB,\,\,AC\) là các tiếp tuyến của đường tròn \(\left( O \right)\) nên \[\widehat {ABO} = \widehat {ACO} = 90^\circ .\]

Do đó hai điểm \(B,\,\,C\) cùng nằm trên đường tròn đường kính \(AO.\)

Vậy tứ giác \(ABOC\) là tứ giác nội tiếp đường tròn đường kính \(AO.\)

2) ⦁ Ta có \(BD\) là đường kính của đường tròn \(\left( O \right)\) nên \(\widehat {BED} = 90^\circ .\)

Xét \(\Delta ABE\) vuông tại \(E,\) ta có: \(\cos \widehat {BAE} = \frac{{AE}}{{AB}}.\)

Xét \(\Delta ABD\) vuông tại \(B,\) ta có: \(\cos \widehat {BAD} = \frac{{AB}}{{AD}}.\)

Do đó \[\frac{{AE}}{{AB}} = \frac{{AB}}{{AD}}\] hay \(A{B^2} = AE \cdot AD.\)

Lại có \(AB = AC\) (tính chất hai tiếp tuyến \(AB,\,\,AC\) của đường tròn \(\left( O \right)\) cắt nhau tại \(A)\) và \(OB = OC\) nên đường thẳng \(AO\) là trung trực của đoạn thẳng \(BC.\) Do đó \(AO \bot BC.\)

Chứng minh tương tự như trên ta cũng có:

\(\frac{{AB}}{{AO}} = \cos \widehat {BAO} = \cos \widehat {BAH} = \frac{{AH}}{{AB}},\) suy ra \(A{B^2} = AH \cdot AO.\)

Vậy \(A{B^2} = AE \cdot AD = AH \cdot AO.\)

⦁ Chứng minh tương tự như trên, ta cũng có:

\(OH{\rm{\;}} \cdot OA = O{B^2} = O{D^2}\) hay \(\frac{{OD}}{{OA}} = \frac{{OH}}{{OD}}.\)

Xét \(\Delta ODH\) và \(\Delta OAD\) có: \(\widehat {AOD}\) là góc chung và \(\frac{{OD}}{{OA}} = \frac{{OH}}{{OD}}.\)

Do đó  (c.g.c). Suy ra \(\widehat {HDO} = \widehat {DAO}\) (hai góc tương ứng).  (1)

Ta có \(\widehat {AHB} = \widehat {AEB} = 90^\circ \) nên hai điểm \(H,\,\,E\) cùng nằm trên đường tròn đường kính \(AB.\)

Do đó tứ giác \(ABHE\)  nội tiếp đường tròn đường kính \(AB.\)

Suy ra \(\widehat {EBH} = \widehat {EAH}\) (hai góc nội tiếp cùng chắn cung \(EH).\) Hay \(\widehat {HBE} = \widehat {DAO}.\,\,\left( 2 \right)\)

Từ (1) và (2) suy ra \(\widehat {HDO} = \widehat {HBE}.\)

3) Gọi \(K\) là giao điểm của \(BE\) và \(MN.\)

Ta có \(BD\,{\rm{//}}\,MN\) (cùng vuông góc với \(AB)\) nên \(\widehat {DBM} = \widehat {BMN}\) (hai góc so le trong).

Xét \(\Delta BHD\) và \(\Delta MKB\) có \(\widehat {DBH} = \widehat {BMK},\,\,\widehat {BDH} = \widehat {KBM}\)

Do đó  (g.g), suy ra \(\frac{{BH}}{{MK}} = \frac{{BD}}{{MB}}.\,\,\,\left( 3 \right)\)

Xét \(\Delta BCD\) và \(\Delta MNB\) có \(\widehat {BCD} = \widehat {MNB} = 90^\circ \) và \(\widehat {CBD} = \widehat {BMN}\)

Do đó  (g.g), suy ra \(\frac{{BC}}{{MN}} = \frac{{BD}}{{MB}}.\,\,\,\,\left( 4 \right)\)

Từ (3) và (4) suy ra \(\frac{{BH}}{{MK}} = \frac{{BC}}{{MN}},\) nên \(\frac{{BH}}{{BC}} = \frac{{MK}}{{MN}}.\)

Do \(OA\) là đường trung trực của \(BC\) nên \(H\) là trung điểm của \(BC,\) suy ra \(BH = \frac{1}{2}BC\) hay \(\frac{{BH}}{{BC}} = \frac{1}{2}\) nên \(\frac{{MK}}{{MN}} = \frac{1}{2},\) do đó \(K\) là trung điểm của \(MN.\)

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

1) Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình:

Để chở 15 tấn thiết bị phục vụ Lễ kỷ niệm 70 năm chiến thắng Điện Biên Phủ, một đội vận chuyển dự định sử dụng các xe tải loại nhỏ. Do thay đổi kế hoạch, đội vận chuyển quyết định chỉ sử dụng các xe tải loại lớn. Vì vậy, số xe tải sử dụng giảm đi 2 xe so với dự định và mỗi xe tải loại lớn chở nhiều hơn mỗi xe tải loại nhỏ là 2 tấn. Hỏi đội vận chuyển sử dụng bao nhiêu xe tải loại lớn? (Biết mỗi xe tải cùng loại đều chở số tấn thiết bị bằng nhau).

2) Một bình đựng nước có dạng hình trụ với bán kính đáy là \(4\) cm và chiều cao là \(25{\rm{\;cm}}{\rm{.}}\) Tính diện tích xung quanh của bình đựng nước đó (lấy \(\pi  \approx 3,14).\)

Xem đáp án » 29/08/2024 1,024

Câu 2:

Với các số thực dương \(x\) và \(y\) thỏa mãn \(x + y + xy = 3,\) tìm giá trị nhỏ nhất của biểu thức \(P = \frac{3}{{x + y}} - xy.\)

Xem đáp án » 29/08/2024 306

Câu 3:

1) Giải hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{\sqrt {3x + 1}  + 2y = 4}\\{3\sqrt {3x + 1}  - y = 5.}\end{array}} \right.\)

2) Trong mặt phẳng tọa độ \(Oxy,\) cho parabol \(\left( P \right):y = {x^2}\) và đường thẳng \(\left( d \right):y = \left( {m - 2} \right)x + 5.\)

a) Chứng minh \[\left( d \right)\] luôn cắt \(\left( P \right)\) tại hai điểm phân biệt.

b) Gọi \({x_1},{x_2}\) là hoành độ các giao điểm của \(\left( d \right)\) và \(\left( P \right).\) Tìm tất cả giá trị của \(m\) để \({x_1} + 5{x_2} = 0.\)

Xem đáp án » 29/08/2024 163

Câu 4:

Cho hai biểu thức \(A = \frac{x}{{\sqrt {x - 3} }}\) và \(B = \frac{{2x - 3}}{{x - 3\sqrt x }} - \frac{1}{{\sqrt x }}\) với \(x > 0,\,\,x \ne 9.\)

1) Tính giá trị của biểu thức \(A\) khi \(x = 16.\)

2) Chứng minh \(B = \frac{{2\sqrt x  - 1}}{{\sqrt x  - 3}}.\)

3) Tìm tất cả giá trị của \(x\) đề \(A - B < 0.\)

 

Xem đáp án » 29/08/2024 148

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn