Câu hỏi:

29/08/2024 1,368

Với các số thực dương \(x\) và \(y\) thỏa mãn \(x + y + xy = 3,\) tìm giá trị nhỏ nhất của biểu thức \(P = \frac{3}{{x + y}} - xy.\)

Sách mới 2k7: Sổ tay Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 30k).

Sổ tay Toán-lý-hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Với \(x > 0,\,\,y > 0\) ta có:

\({\left( {x - y} \right)^2} \ge 0\)

\({\left( {x + y} \right)^2} \ge 4xy = 4\left[ {3 - \left( {x + y} \right)} \right]{\rm{ }}\)

\({\left( {x + y} \right)^2} + 4\left( {x + y} \right) - 12 \ge 0\)

\(\left( {x + y + 6} \right)\left( {x + y - 2} \right) \ge 0\)

Mà \(x,\,\,y\) là các số dương nên \(x + y + 6 > 0.\) Do đó \(x + y \ge 2.\)

Từ đó \(P = \frac{3}{{x + y}} + x + y - 3 = \frac{4}{{x + y}} + \left( {x + y} \right) - \frac{1}{{x + y}} - 3\)

\[\mathop  \ge \limits^{{\rm{B\ST Cauchy}}} \]\[2\sqrt {\frac{4}{{x + y}} \cdot \left( {x + y} \right)}  - \frac{1}{{x + y}} - 3 = 1 - \frac{1}{{x + y}}\]

\( \ge 1 - \frac{1}{2} = \frac{1}{2}.\)

Vậy giá trị nhỏ nhất của \(P\) là \(\frac{1}{2}\) khi \(x = y = 1.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

1) Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình:

Để chở 15 tấn thiết bị phục vụ Lễ kỷ niệm 70 năm chiến thắng Điện Biên Phủ, một đội vận chuyển dự định sử dụng các xe tải loại nhỏ. Do thay đổi kế hoạch, đội vận chuyển quyết định chỉ sử dụng các xe tải loại lớn. Vì vậy, số xe tải sử dụng giảm đi 2 xe so với dự định và mỗi xe tải loại lớn chở nhiều hơn mỗi xe tải loại nhỏ là 2 tấn. Hỏi đội vận chuyển sử dụng bao nhiêu xe tải loại lớn? (Biết mỗi xe tải cùng loại đều chở số tấn thiết bị bằng nhau).

2) Một bình đựng nước có dạng hình trụ với bán kính đáy là \(4\) cm và chiều cao là \(25{\rm{\;cm}}{\rm{.}}\) Tính diện tích xung quanh của bình đựng nước đó (lấy \(\pi  \approx 3,14).\)

Xem đáp án » 29/08/2024 3,257

Câu 2:

Từ điểm \(A\) nằm bên ngoài đường tròn \(\left( O \right),\) kẻ hai tiếp tuyến \(AB,\,\,AC\) với đường tròn \(\left( O \right)\) \((B,\,\,C\) là hai tiếp điểm).

1) Chứng minh tứ giác \(ABOC\) là tứ giác nội tiếp.

2) Vẽ đường kính \(BD\) của đường tròn \(\left( O \right).\) Gọi \(E\) là giao điểm thứ hai của đường thẳng \(AD\) và đường tròn \(\left( O \right).\) Đường thẳng \(BC\) và đường thẳng \(AO\) cắt nhau tại \(H.\) Chứng minh \(A{B^2} = AE \cdot AD = AH \cdot AO\) và \(\widehat {HDO} = \widehat {HBE}.\)

3) Lấy điểm \(M\) thuộc tia đối của tia \(CB.\) Gọi \(N\) là chân đường vuông góc kẻ từ điểm \(M\) đến đường thẳng \(AB.\) Chứng minh đường thẳng \(BE\) đi qua trung điểm của đoạn thẳng \(MN.\)
 

Xem đáp án » 29/08/2024 907

Câu 3:

Cho hai biểu thức \(A = \frac{x}{{\sqrt {x - 3} }}\) và \(B = \frac{{2x - 3}}{{x - 3\sqrt x }} - \frac{1}{{\sqrt x }}\) với \(x > 0,\,\,x \ne 9.\)

1) Tính giá trị của biểu thức \(A\) khi \(x = 16.\)

2) Chứng minh \(B = \frac{{2\sqrt x  - 1}}{{\sqrt x  - 3}}.\)

3) Tìm tất cả giá trị của \(x\) đề \(A - B < 0.\)

 

Xem đáp án » 29/08/2024 854

Câu 4:

1) Giải hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{\sqrt {3x + 1}  + 2y = 4}\\{3\sqrt {3x + 1}  - y = 5.}\end{array}} \right.\)

2) Trong mặt phẳng tọa độ \(Oxy,\) cho parabol \(\left( P \right):y = {x^2}\) và đường thẳng \(\left( d \right):y = \left( {m - 2} \right)x + 5.\)

a) Chứng minh \[\left( d \right)\] luôn cắt \(\left( P \right)\) tại hai điểm phân biệt.

b) Gọi \({x_1},{x_2}\) là hoành độ các giao điểm của \(\left( d \right)\) và \(\left( P \right).\) Tìm tất cả giá trị của \(m\) để \({x_1} + 5{x_2} = 0.\)

Xem đáp án » 29/08/2024 597

Bình luận


Bình luận