Ôn thi Cấp tốc 789+ vào 10 môn Toán khu vực Bình Dương 2024 - 2025 (Đề 15)
31 người thi tuần này 4.6 264 lượt thi 5 câu hỏi 50 phút
🔥 Đề thi HOT:
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Đắk Lắk
Đề thi thử TS vào 10 (Tháng 1) năm học 2025 - 2026_Môn Toán_THCS Cầu Giấy_Quận Cầu Giấy
Đề thi tham khảo môn Toán vào 10 tỉnh Quảng Bình năm học 2025-2026
Đề thi tham khảo TS vào 10 năm học 2025 - 2026_Môn Toán_TP Phú Thọ
54 bài tập Hàm số bậc hai và giải bài toán bằng cách lập phương trình có lời giải
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_TP Hà Nội
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
1) a) \({x^4} - 8{x^2} - 9 = 0\). Đặt \(t = {x^2}\,\,\left( {t \ge 0} \right)\). Phương trình đã cho trở thành \({t^2} - 8t - 9 = 0.\)
Ta thấy \(1 - \left( { - 8} \right) + \left( { - 9} \right) = 0\) nên phương trình có 2 nghiệm \(t = - 1\) (loại) hoặc \(t = 9\,\,\left( {{\rm{TM}}} \right).\)
Với \(t = 9\) thì \({x^2} = 9\). Do đó \(x = 3\) hoặc \(x = - 3.\)
Vậy phương trình đã cho có nghiệm \[x = - 3\,;\,\,x = 3.\]
b) \(\left\{ {\begin{array}{*{20}{l}}{x + y = 9}\\{3x - 2y = - 3}\end{array}} \right.\). Nhân hai vế của phương trình thứ nhất với 2, ta được hệ: \(\left\{ {\begin{array}{*{20}{l}}{2x + 2y = 18}\\{3x - 2y = - 3}\end{array}} \right..\)
Cộng từng vế của phương trình mới, ta được: \[5x = 15\], tức là \[x = 3.\]
Thế \[x = 3\] vào phương trình \[x + y = 9\] ta có: \[3 + y = 9\] hay \[y = 6\].
Vậy hệ phương trình có nghiệm duy nhất \(\left( {x\,;\,\,y} \right) = \left( {3\,;\,\,6} \right)\).
2) \(M = 2\sqrt {9 - 4\sqrt 5 } - \sqrt {20} = 2\sqrt {{{\left( {\sqrt 5 - 2} \right)}^2}} - \sqrt {4 \cdot 5} \)\( = 2\left| {\sqrt 5 - 2} \right| - 2\sqrt 5 = 2\sqrt 5 - 4 - 2\sqrt 5 = - 4\).
Vậy \(M = 2\sqrt {9 - 4\sqrt 5 } = - 4\).
Lời giải
1) Vẽ đồ thị của hàm số \(y = \frac{3}{4}{x^2}\).
Tập xác định \(D = \mathbb{R}\).
Bảng giá trị:
\(x\) |
\( - 2\) |
\( - 1\) |
0 |
1 |
2 |
\(y = \frac{3}{4}{x^2}\) |
3 |
\(\frac{3}{4}\) |
0 |
\(\frac{3}{4}\) |
3 |

2) Hoành độ giao điểm của \(\left( P \right)\) và \(\left( d \right)\) là nghiệm của phương trình:
\(\frac{3}{4}{x^2} = x + m\) hay \(\frac{3}{4}{x^2} - x - m = 0\).
Để \(\left( d \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt thì phương trình trên phải có hai nghiệm phân biệt
Hay \(\Delta = {( - 1)^2} - 4 \cdot \frac{3}{4}( - m) = 1 + 3m > 0\) hay \(m > \frac{{ - 1}}{3}\).
Vậy với \(m > \frac{{ - 1}}{3}\) thì \(\left( d \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt.
Lời giải
1) Để phương trình có nghiệm bằng 2, thay \(x = 2\) vào phương trình, ta được:
\({2^2} - 2\left( {m - 2} \right) \cdot 2 + {m^2} - 8 = 0\) hay \(4 - 4m + 8 + {m^2} - 8 = 0\).
Khi đó \({m^2} - 4m + 4 = 0\) hay \({\left( {m - 2} \right)^2} = 0\) nên \(m = 2\).
Vậy \(m = 2\) thì phương trình có nghiệm \(x = 2\)
2) \({x^2} - 2\left( {m - 2} \right)x + {m^2} - 8 = 0 & \left( 1 \right)\)
Ta có \[\Delta = 4{\left( {m - 2} \right)^2} - 4\left( {{m^2} - 8} \right) = 4{m^2} - 16m + 16 - 4{m^2} + 32 = - 32m + 48\].
Để phương trình \(\left( 1 \right)\) có hai nghiệm phân biệt thì \[\Delta > 0\] hay \[ - 32m + 48 > 0\] nên \[m < 3.\]
Khi đó \(\left( 1 \right)\) có hai nghiệm phân biệt \[{x_1},{\rm{ }}{x_2}.\]
Áp dụng hệ thức Viète, ta có: \(\left\{ {\begin{array}{*{20}{l}}{{x_1} + {x_2} = 2\left( {m - 2} \right)}\\{{x_1}{x_2} = {m^2} - 8}\end{array}} \right.\).
Để \(4{x_1} - 3{x_2} = 25\) thì \(\left\{ {\begin{array}{*{20}{l}}{4{x_1} - 3{x_2} = 25}\\{{x_1} + {x_2} = 2m - 4\,\,\,\,\,\left( 2 \right)}\end{array}} \right.\).
Nhân hai vế của phương trình \[\left( 2 \right)\] với 4, ta được hệ: \(\left\{ {\begin{array}{*{20}{l}}{4{x_1} - 3{x_2} = 25 & & \left( 3 \right)}\\{4{x_1} + 4{x_2} = 8m - 16 & \left( 4 \right)}\end{array}} \right..\)
Trừ từng vế phương trình \(\left( 4 \right)\) cho \(\left( 3 \right)\) ta được: \(7{x_2} = 8m - 41\), tức là \({x_2} = \frac{{8m - 41}}{7}.\)
Thế \({x_2} = \frac{{8m - 41}}{7}\) vào phương trình \[\left( 2 \right)\] ta có: \({x_1} + \frac{{8m - 41}}{7} = 2m - 4\) hay \({x_1} = \frac{{6m + 13}}{7}.\)
Thay \({x_1} = \frac{{6m + 13}}{7}\,;\,\,{x_2} = \frac{{8m - 41}}{7}\) vào \({x_1}{x_2} = {m^2} - 8\) ta được
\(\frac{{6m + 13}}{7} \cdot \frac{{8m - 41}}{7} = {m^2} - 8\)
\(\frac{{\left( {6m + 13} \right)\left( {8m - 41} \right)}}{{49}} = {m^2} - 8\)
\[\left( {6m + 13} \right)\left( {8m - 41} \right) = 49\left( {{m^2} - 8} \right)\]
\(48{m^2} - 142m - 533 = 49{m^2} - 392\)
\({m^2} + 142m + 141 = 0\).
Ta thấy \(1 - 142 + 141 = 0\) nên phương trình có nghiệm \(m = - 1\) hoặc \(m = - 141\) (thỏa mãn \(m < 3).\)
Vậy \[m \in \left\{ { - 1\,;\,\, - 141} \right\}\] thì phương trình đã cho có hai nghiệm phân biệt \({x_1}\), \({x_2}\) thỏa mãn điều kiện \(4{x_1} - 3{x_2} = 25.\)
Lời giải
Gọi \[x\,\,\left( {\rm{m}} \right)\] là chiều dài ban đầu của khu vườn hình chữ nhật \[\left( {0 < x < 100} \right)\].
Khi đó nửa chu vi khu vườn hình chữ nhật là: \(200:2 = 100\,\,\left( m \right).\)
Chiều rộng ban đầu của khu vườn là \(100 - x\,\,\left( {\rm{m}} \right)\).
Chiều dài khu vườn sau khi giảm \(8\,\,{\rm{m}}\) là \(x - 8\,\,\left( {\rm{m}} \right)\).
Diện tích của khu vườn sau khi giảm là: \[\left( {x - 8} \right)\left( {100 - x} \right) = 2\,\,080\]
\[ - {x^2} + 108x - 800 = 2\,\,080\]
\[{x^2} - 108x + 2\,\,880 = 0\]
\(x = 60\) hoặc \(x = 48\).
• Với \(x = 60\) hay chiều dài ban đầu của khu vườn là \(60\,\,{\rm{m}}\) thì
Chiều rộng ban đầu của khu vườn là \(100 - 60 = 40\,\,\left( {\rm{m}} \right)\) (thỏa mãn).
• Với \(x = 48\) hay chiều dài ban đầu của khu vườn là \(60\,\,{\rm{m}}\) thì
Chiều rộng ban đầu của khu vườn là \(100 - 48 = 52\,\,\left( {\rm{m}} \right)\) (loại vì chiều dài phải lớn hơn chiều rộng).
Vậy chiều dài ban đầu của khu vườn là \(60\,\,{\rm{m}}\) và chiều rộng ban đầu của khu vườn là \(40\,\,{\rm{m}}{\rm{.}}\)
Lời giải

1) Do \(\widehat {AMB} = \widehat {ANB} = 90^\circ \) (các góc nội tiếp chắn nửa đường tròn) nên \(\widehat {CMB} = \widehat {CND} = 90^\circ .\)
Xét tứ giác \[CMDN\] có
\[\widehat {CMD} + \widehat {CND} = 90^\circ + 90^\circ = 180^\circ .\]
Mà hai góc này ở vị trí đối diện nên tứ giác \[CMDN\] nội tiếp được trong đường tròn.
2) Xét \(\Delta AMD\) và \(\Delta ANC\) có \(\widehat {NAC}\) chung; \(\widehat {AMD} = \widehat {ANC} = 90^\circ .\)
Do đó , suy ra \(\frac{{AM}}{{AN}} = \frac{{AD}}{{AC}}\) hay \(AM \cdot AC = AN \cdot AD\).
3) Do \[ABNM\] nội tiếp \(\left( O \right)\) nên \(\widehat {BAM} + \widehat {BNM} = 180^\circ \).
Mà \(\widehat {BNM} + \widehat {CNM} = 180^\circ \) (hai góc kề bù) nên \(\widehat {CNM} = \widehat {BAM}\).
Mà \[\widehat {CNM} = \widehat {MCD}\] (góc nội tiếp cùng chắn cung
Suy ra \(\widehat {MCD} = \widehat {OMB}\,\,\left( { = \widehat {CNM}} \right)\) hay \(\widehat {MCD} = \widehat {OMB}.\)
4) Do \[M\] là điểm chính giữa cung \[AB\] nên \(MA = MB\).
Suy ra \(\widehat {MNA} = \widehat {MAB}\) (góc nội tiếp chắn hai cung bằng nhau).
Xét \(\Delta MAN\) và \(\Delta MAE\) có \(\widehat {AME}\) chung; \(\widehat {MNA} = \widehat {MAE}\,\,({\rm{cmt}})\).
Do đó .
Suy ra \(\widehat {MAN} = \widehat {MEA}\) (hai góc tương ứng).
Mà \[\widehat {MAN} = \widehat {MBN}\] (góc nội tiếp cùng chắn nên \(\widehat {MBN} = \widehat {MEB}\).
Do đó \(\widehat {DBN} = \widehat {NEB}\) (đpcm).