Đề luyện thi Toán vào lớp 10 Hà Nội 2026 có đáp án - Đề 41
46 người thi tuần này 4.6 46 lượt thi 9 câu hỏi 120 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
Đề KSCL THCS Văn Quán - HN_năm học 2025-2026_Tháng 12 có đáp án
Đề KSCL THCS Phú Diễn - HN_năm học 2025-2026_Tháng 12 có đáp án
Đề KSCL THCS Lê Lợi - HN_năm học 2025-2026_Tháng 12 có đáp án
Đề KSCL THCS Thịnh Quang - HN_năm học 2025-2026_Tháng 9 có đáp án
Đề thi tuyển sinh vào lớp 10 môn Toán Sở GD&ĐT Đắk Nông năm học 2025-2026 có đáp án
Đề thi tuyển sinh vào lớp 10 môn Toán Sở GD&ĐT Bắc Kạn năm học 2025-2026 có đáp án
Đề thi tuyển sinh vào lớp 10 môn Toán Sở GD&ĐT Đắk Lắk năm học 2025-2026 có đáp án
Đề thi tuyển sinh vào lớp 10 môn Toán Sở GD&ĐT Long An năm học 2025-2026 có đáp án
Danh sách câu hỏi:
Đoạn văn 1
Lời giải
Nhóm có tần số lớn nhất là nhóm \[\left[ {600\,;\,750} \right)\] với tần số \[40\].
Tần số tương đối của nhóm có tần số lớn nhất là \[\frac{{40.100}}{{150}}\% = 26,7\% \].
Lời giải
1) Với \(x = 16\) (thoả mãn \(x > 0,\,{\rm{ }}x \ne 4\)) ta có \(A = \frac{{16 + 3}}{{\sqrt {16} - 2}}\)\( = \frac{{19}}{2}\). Vậy \(A = \frac{{19}}{2}\) khi \(x = 16\).
2) Với \(x > 0,\,{\rm{ }}x \ne 4\) ta có \(B = \frac{{\sqrt x + 3}}{{\sqrt x - 2}} - \frac{{3\sqrt x + 6}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}\)
\( = \frac{{\left( {\sqrt x + 3} \right)\left( {\sqrt x + 2} \right) - 3\sqrt x - 6}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}\)
\( = \frac{{x + 5\sqrt x + 6 - 3\sqrt x - 6}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}\)\( = \frac{{\sqrt x \left( {\sqrt x + 2} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}\)
\( = \frac{{\sqrt x }}{{\sqrt x - 2}}\)
Vậy với \(x > 0,\,{\rm{ }}x \ne 4\) thì \(B = \frac{{\sqrt x }}{{\sqrt x - 2}}\)
3) Ta có \(\frac{A}{B} = \frac{{x + 3}}{{\sqrt x - 2}}:\frac{{\sqrt x }}{{\sqrt x - 2}} = \frac{{x + 3}}{{\sqrt x }}\)
Xét \(\frac{A}{B} - 3 = \frac{{x + 3}}{{\sqrt x }} - 3 = \frac{{x - 3\sqrt x + 3}}{{\sqrt x }} = \frac{{{{\left( {\sqrt x - \frac{3}{2}} \right)}^2} + \frac{3}{4}}}{{\sqrt x }}\)
Với \(x > 0,\,{\rm{ }}x \ne 4\) thì \(\sqrt x > 0,\,\,{\left( {\sqrt x - \frac{3}{2}} \right)^2} + \frac{3}{4} > 0\) nên \(\frac{A}{B} - 3 > 0\). Suy ra \(\frac{A}{B} > 3\).
Vậy với \(x > 0,\,{\rm{ }}x \ne 4\) thì \(\frac{A}{B} > 3\).
Lời giải

Đặt hệ tọa độ như hình vẽ, coi khung sắt là hình chữ nhật \[ABCD\]. Khi đó \[\left( P \right){\rm{ }}\]đi qua các điểm \[O\left( {0;0} \right)\]; \[\left( { - 2; - 4} \right)\]; \[\left( {2; - 4} \right)\] nên parabol \[\left( P \right)\] có phương trình: \[y = - {x^2}\].
Giả sử \[C \in \left( P \right)\]\[ \Rightarrow \] \[\left( {0 < x < 2} \right)\]. Khi đó \(BC = 2x\); suy ra
Ta có:
Suy ra \[{S^2} \le \frac{{1024}}{{27}}\] hay \[S \le \frac{{32\sqrt 3 }}{9}\]. Dấu xảy ra khi \[x = \frac{{2\sqrt 3 }}{3}\].
Vậy kích thước của khung thép có chiều rộng là \[\frac{{4\sqrt 3 }}{3}\,\,\left( {\rm{m}} \right)\]; chiều dài là \[\frac{8}{3}\,\,\left( {\rm{m}} \right)\].
Đoạn văn 2
Lời giải
Nếu thuê theo gói cố định thì hàng tháng anh Tâm phải trả số tiền là \(350000\) (đồng).
Nếu thuê theo gói linh hoạt thì hàng tháng anh Tâm phải trả số tiền là
\(189000 + 374.400 = 338600\) (đồng)
Như vậy, nếu anh Tâm nên thuê pin theo gói linh hoạt thì tiết kiệm hơn.
Số tiền anh Tâm tiết kiệm được mỗi tháng là \(350000 - 338600 = 11400\) (đồng).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đoạn văn 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


