Đề thi tuyển sinh vào lớp 10 môn Toán năm 2023-2024 Bình Thuận có đáp án
4.6 0 lượt thi 7 câu hỏi 45 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Đề thi HOT:
Đề minh họa thi vào lớp 10 môn Toán năm 2026 TP. Hồ Chí Minh
Đề thi tuyển sinh vào lớp 10 Toán năm học 2023 - 2024 Sở GD&ĐT Hà Nội có đáp án
67 bài tập Căn thức và các phép toán căn thức có lời giải
45 bài tập Phương trình quy về phương trình bậc nhất 2 ẩn và hệ phương trình bậc nhất 2 ẩn có lời giải
63 bài tập Tỉ số lượng giác và ứng dụng có lời giải
52 bài tập Hệ Phương trình bậc nhất hai ẩn và giải hệ phương trình bậc nhất hai ẩn có lời giải
52 bài tập Hệ thức lượng trong tam giác có lời giải
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
a) \({x^2} + 2x - 3 = 0\)
Ta có: \(\Delta = {2^2} - 4.1.\left( { - 3} \right) = 16 > 0\) \( \Rightarrow \sqrt \Delta = \sqrt {16} = 4\)
Do đó phương trình có hai nghiệm phân biệt
\({x_1} = \frac{{ - 2 - 4}}{{2.1}} = - 3\)
\({x_2} = \frac{{ - 2 + 4}}{{2.1}} = 1\)
Vậy tập nghiệm phương trình \(S = \left\{ { - 3;{\rm{ 1}}} \right\}\)
Cách khác:
\({x^2} + 2x - 3 = 0\)
Có \(a + b + c = 1 + 2 + \left( { - 3} \right) = 0\)
Nên \({x_1} = 1\)
\({x_2} = \frac{c}{a} = \frac{{ - 3}}{1} = - 3\)
Vậy tập nghiệm phương trình \(S = \left\{ { - 3;{\rm{ 1}}} \right\}\)
b) \(\left\{ {\begin{array}{*{20}{c}}{ - x + 3y = 5}\\{x + y = 3}\end{array}} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}4y = 8\\x + y = 3\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}y = 2\\x + 2 = 3\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}y = 2\\x = 1\end{array} \right.\)
Vậy tập nghiệm hệ phương trình \(S = \left\{ {\left( {1;{\rm{ }}2} \right)} \right\}\)
Lời giải
a) \(A = \left( {\sqrt {27} - \sqrt {12} + \sqrt {48} } \right)\sqrt 3 \)
\[A = \left( {\sqrt {9.3} - \sqrt {4.3} + \sqrt {16.3} } \right)\sqrt 3 \]
\[A = \left( {3\sqrt 3 - 2\sqrt 3 + 4\sqrt 3 } \right)\sqrt 3 \]
\[A = 5\sqrt 3 .\sqrt 3 \]
\(A = 15\)
b) \(B = \left( {\frac{{\sqrt x }}{{\sqrt x - 1}} - \frac{1}{{x - \sqrt x }}} \right):\frac{{\sqrt x + 1}}{{3\sqrt x }}\) với \(0 < x\) và \(x \ne 1\).
\(B = \left( {\frac{{\sqrt x }}{{\sqrt x - 1}} - \frac{1}{{\sqrt x \left( {\sqrt x - 1} \right)}}} \right):\frac{{\sqrt x + 1}}{{3\sqrt x }}\)
\(B = \left( {\frac{{x - 1}}{{\sqrt x \left( {\sqrt x - 1} \right)}}} \right).\frac{{3\sqrt x }}{{\sqrt x + 1}}\)
\(B = \frac{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}{{\sqrt x \left( {\sqrt x - 1} \right)}}.\frac{{3\sqrt x }}{{\sqrt x + 1}}\)
\(B = 3\)
Lời giải
a) Vẽ đồ thị \((P)\)trên mặt phẳng tọa độ \[Oxy\].
Bảng giá trị:
Đồ thị hàm số \(y = {x^2}\) là một Parabol \((P)\) đi qua các điểm \(\left( { - 2;{\rm{ 4}}} \right)\), \(\left( { - 1;{\rm{ 1}}} \right)\); \(\left( {0;{\rm{ 0}}} \right)\); \(\left( {1;{\rm{ 1}}} \right)\), \(\left( {2;{\rm{ 4}}} \right)\)

b) Tìm giá trị nguyên của tham số \(m\) để đường thẳng \((d):y = 2mx - {m^2} + 1\) cắt \((P)\) tại hai điểm phân biệt có hoành độ lần lượt là \({x_1},{x_2}\) thỏa mãn \({x_1} < 2024 < {x_2}\).
Hoành độ giao điểm của \((d)\) và \((P)\) là nghiệm phương trình:
\({x^2} = 2mx - {m^2} + 1\)
\( \Leftrightarrow {x^2} - 2mx + {m^2} - 1 = 0\) \(\left( 1 \right)\)
Đường thẳng \((d)\) cắt \((P)\) tại 2 điểm phân biệt khi và chỉ khi phương trình \(\left( 1 \right)\) có hai nghiệm phân biệt
\( \Leftrightarrow \Delta ' > 0\)
\( \Leftrightarrow {\left( { - m} \right)^2} - 1.\left( {{m^2} - 1} \right) > 0\)
\( \Leftrightarrow {m^2} - {m^2} + 1 > 0\)
\( \Leftrightarrow 1 > 0\) (Hiển nhiên)
Phương trình \(\left( 1 \right)\) luôn có 2 nghiệm phân biệt \({x_1},{x_2}\) hay đường thẳng \((d)\) luôn cắt \((P)\) tại hai điểm phân biệt có hoành độ lần lượt là \({x_1},{x_2}\) với mọi giá trị \(m\).
\({x_1} = \frac{{m - \sqrt 1 }}{1} = m - 1\)
\({x_1} = \frac{{m + \sqrt 1 }}{1} = m + 1\)
Ta có: \({x_1} < 2024 < {x_2}\)
\( \Leftrightarrow m - 1 < 2024 < m + 1\)
\( \Leftrightarrow \left\{ \begin{array}{l}m - 1 < 2024\\m + 1 > 2024\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}m < 2025\\m > 2023\end{array} \right.\)
\( \Leftrightarrow m = 2024\) (Vì cần tìm \(m\) có giá trị nguyên)
Vậy \(m = 2024\) thì \((d)\) cắt \((P)\) tại hai điểm phân biệt có hoành độ lần lượt là \({x_1},{x_2}\) thỏa mãn \({x_1} < 2024 < {x_2}\).
Lời giải
Gọi số xe nhỏ (chiếc) công ty đã thuê là \(x\), \(\left( {x \in \mathbb{N},{\rm{ }}x > 2} \right)\).
Do đó số xe lớn (chiếc) công ty dự định thuê là \(x - 2\).
Số xe lớn và nhỏ đều chở vừa hết 210 người nên:
Số người trên xe nhỏ là: \(\frac{{210}}{x}\) (người)
Số người trên xe lớn là: \(\frac{{210}}{{x - 2}}\) (người)
Theo đề mỗi xe nhỏ chở ít hơn mỗi xe lớn là 12 người, nên ta có phương trình:
\(\frac{{210}}{{x - 2}} - \frac{{210}}{x} = 12\)
\( \Leftrightarrow 210x - 210\left( {x - 2} \right) = 12x\left( {x - 2} \right)\)
\( \Leftrightarrow 210x - 210x + 420 = 12{x^2} - 24x\)
\( \Leftrightarrow 12{x^2} - 24x - 420 = 0\)
\( \Leftrightarrow 12\left( {x - 7} \right)\left( {x + 5} \right) = 0\)
\[ \Leftrightarrow \left[ \begin{array}{l}x - 7 = 0\\x + 5 = 0\end{array} \right.\]
\[ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 7{\rm{ }}}&{\left( {{\rm{Nha\"a n}}} \right)}\\{x = - 5}&{\left( {{\rm{Loa\"i i}}} \right)}\end{array}} \right.\]
Vậy công ty đã thuê 7 chiếc xe nhỏ.
Lời giải
Gọi \(R\) (cm) là bán kính đáy chai. \[\left( {R > 0} \right)\]
Thể tích nước trong chai (hình trụ có chiều cao 10 cm) là:
\[{V_1} = \pi {R^2}.{h_1} = 10\pi {R^2}\] \(\left( {{\rm{c}}{{\rm{m}}^3}} \right)\)
Thể tích không chứa nước trong chai khi lật ngược chai (hình trụ có chiều cao 8 cm) là:
\[{V_2} = \pi {R^2}.{h_2} = 8\pi {R^2}\] \(\left( {{\rm{c}}{{\rm{m}}^3}} \right)\)
Thể tích của chai (\[450\pi \] \({\rm{c}}{{\rm{m}}^3}\)) là tổng thể tích của nước và phần không chứa nước trong chai khi lật ngược chai lại, nên ta có:\[{V_1} + {V_2} = 450\pi \]
\( \Leftrightarrow 10\pi {R^2} + 8\pi {R^2} = 450\pi \)
\( \Leftrightarrow 18\pi {R^2} = 450\pi \)
\( \Leftrightarrow {R^2} = 25\)
\( \Rightarrow R = 5\) (Do \[R > 0\])
Vậy bán kính của đáy chai là 5 cm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

