Câu hỏi:

27/12/2025 30 Lưu

Một cái chai có chứa một lượng nước, phần chứa nước là hình trụ có chiều cao 10 cm, khi lật ngược chai lại thì phần không chứa nước cũng là một hình trụ có chiều cao 8 cm (như hình vẽ bên. Biết thể tích của chai là \(450\pi \)\({\rm{c}}{{\rm{m}}^{\rm{3}}}\). Tính bán kính của đáy chai (giả sử độ dày của thành chai và đáy chai không đáng kể).

Một cái chai có chứa một lượng nước, phần chứa nước là hình trụ có chiều cao 10 cm, khi lật ngược (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(R\) (cm) là bán kính đáy chai. \[\left( {R > 0} \right)\]

Thể tích nước trong chai (hình trụ có chiều cao 10 cm) là:

\[{V_1} = \pi {R^2}.{h_1} = 10\pi {R^2}\] \(\left( {{\rm{c}}{{\rm{m}}^3}} \right)\)

Thể tích không chứa nước trong chai khi lật ngược chai (hình trụ có chiều cao 8 cm) là:

\[{V_2} = \pi {R^2}.{h_2} = 8\pi {R^2}\] \(\left( {{\rm{c}}{{\rm{m}}^3}} \right)\)

Thể tích của chai (\[450\pi \] \({\rm{c}}{{\rm{m}}^3}\)) là tổng thể tích của nước và phần không chứa nước trong chai khi lật ngược chai lại, nên ta có:\[{V_1} + {V_2} = 450\pi \]

\( \Leftrightarrow 10\pi {R^2} + 8\pi {R^2} = 450\pi \)

\( \Leftrightarrow 18\pi {R^2} = 450\pi \)

\( \Leftrightarrow {R^2} = 25\)

\( \Rightarrow R = 5\) (Do \[R > 0\])

Vậy bán kính của đáy chai là 5 cm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho đường tròn \((O)\)và điểm \(A\) nằm bên ngoài đường tròn từ \(A\), vẽ hai tiếp tuyến (ảnh 1)

a) Xét tứ giác \(ABOC\) có:

\(\widehat {ABO} = \widehat {ACO} = 90^\circ \) (\(AB\), \(AC\) lần lượt là tiếp tuyến tại \(B\), \(C\) của \(\left( O \right)\))

\( \Rightarrow \widehat {ABO} + \widehat {ACO} = 180^\circ \)

Vậy tứ giác \(ABOC\) nội tiếp (Hai góc đối bù nhau)

b) Xét \(\Delta ABF\) và \(\Delta AEB\) có:

\(\widehat {BAF}\) là góc chung

\(\widehat {ABF} = \widehat {AEB}\)

Do đó \(\Delta ABF \sim \Delta AEB\) (g – g)

\[ \Rightarrow \frac{{AB}}{{AF}} = \frac{{AE}}{{AB}}\] (tính chất hai tam giác đồng dạng)

\( \Rightarrow A{B^2} = AE.AF\)

c) Xét \(\left( O \right)\) có \(AB\), \(AC\) lần lượt là tiếp tuyến tại \(B\), \(C\) của \(\left( O \right)\), \(OA \cap BC = H\)

\( \Rightarrow OA \bot BC\) tại \(H\)

Xét \(\Delta ABO\) vuông tại \(B\), đường cao \(BH\), ta có:

\(A{B^2} = AH.AO\)

Do đó \(AE.AF = AH.AO\) \(\left( { = A{B^2}} \right)\)

\( \Rightarrow \frac{{AE}}{{AH}} = \frac{{AO}}{{AF}}\)

Xét \(\Delta AEO\) và \(\Delta AHF\), ta có:

\(\widehat {HAF}\) là góc chung

\(\frac{{AE}}{{AH}} = \frac{{AO}}{{AF}}\)

Do đó \(\Delta AEO \sim \Delta AHF\) (c – g – c)

\( \Rightarrow \widehat {AEO} = \widehat {AHF}\) (Hai góc tương ứng)

Mà \(\widehat {AHF} + \widehat {FHO} = 180^\circ \) (hai góc kề bù)

nên \(\widehat {AEO} + \widehat {FHO} = 180^\circ \) hay \(\widehat {FEO} + \widehat {FHO} = 180^\circ \)

Suy ra tứ giác \(OHFE\) nội tiếp (Hai góc đối bù nhau)

\( \Rightarrow \widehat {HFE} + \widehat {HOE} = 180^\circ \) (Tính chất tứ giác nội tiếp)

Kéo dài \(AO\) cắt \(\left( O \right)\) tại \(K\) (\(O\) nằm giữa \(A\) và \(K\)ta có:\(\widehat {KOE} + \widehat {HOE} = 180^\circ \)              

\( \Rightarrow \widehat {KOE} = \widehat {HFE}\) (Cùng bù \(\widehat {HOE}\))

Xét \(\left( O \right)\), ta có:

\(\widehat {EBC} = 90^\circ \) (Góc nội tiếp chắn nửa đường tròn)

       \[ \Rightarrow EB \bot BC\]

Mặt khác, ta có:\( \Rightarrow OA \bot BC\) tại \(H\) (cmt)\( \Rightarrow AK \bot BC\)

Do đó: \(EB{\rm{ // }}AK\) (cùng vuông góc với \(BC\)) \( \Rightarrow \widehat {KOE} = \widehat {OEB}\) (Hai góc so le trong)

\( \Rightarrow \widehat {KOE} = \widehat {CEB}\)

Suy ra\(\widehat {HFE} = \widehat {CEB}{\rm{ }}\left( { = \widehat {KOE}} \right)\)

Xét \(\left( O \right)\), ta có: \(\widehat {BFE} = \widehat {BCE}\)

Trong \(\Delta EBC\) vuông tại \(B\), ta có: \(\widehat {BEC} + \widehat {BCE} = 90^\circ \)

Ta có:

\(\widehat {BFH} = \widehat {BFE} + \w\(HF\)idehat {HFE} = \widehat {BCE} + \widehat {BEC} = 90^\circ \)\( \Rightarrow HF \bot BI\) tại \(F\)

Xét \(\Delta BHI\) vuông tại \(H\), đường cao , ta có:

\(I{H^2} = IF.IB\) \(\left( 1 \right)\)

Xét \[\Delta IAF\] và \[\Delta IBA\], ta có:

\(\widehat {AIF}\) là góc chung

\(\widehat {IBA} = \widehat {IAF}\) (\(\widehat {IBA} = \widehat {BEF}\) cùng chắn cung \(BF\) của \(\left( O \right)\), \(\widehat {BEF} = \widehat {IAF}\)là hai góc so le trong của \(EB{\rm{ // }}AK\))

Vậy \[\Delta IAF \sim \Delta IBA\] (g – g)

\( \Rightarrow \frac{{IA}}{{IB}} = \frac{{IF}}{{IA}}\)

\( \Rightarrow I{A^2} = IF.IB\) \(\left( 2 \right)\)

Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) \( \Rightarrow I{H^2} = I{A^2}\)

\( \Rightarrow IH = IA\) hay \(I\) là trung điểm \(AH\)

Lời giải

Từ hình vuông đầu tiên, bạn Hùng vẽ hình vuông thứ hai có các đỉnh là trung điểm của các cạnh hình (ảnh 2)

Nhận xét:

Xét hình vuông \(ABCD\), gọi \(E,{\rm{ }}F,{\rm{ }}G,{\rm{ }}H\) lần lượt là trung điểm \(AB,{\rm{ }}BC,{\rm{ }}CD,{\rm{ }}DA\).

Khi đó hình vuông \[EFGH\] có các đỉnh là trung điểm của các cạnh hình vuông \(ABCD\)

Dễ dàng nhận thấy\(\Delta AEH = \Delta BEH = \Delta CGF = \Delta DGH = \Delta OEH = \Delta OEF = \Delta OGF = \Delta OHG\) (c – c – c) (hoặc trường hợp hai cạnh góc vuông)

Do đó \({S_{ABCD}} = 8.{S_{\Delta OHG}}\), \({S_{EFGH}} = 4.{S_{\Delta OHG}}\)

\( \Rightarrow {S_{ABCD}} = 2{S_{EFGH}}\)

Quay lại bài toán, gọi \({S_1};{\rm{ }}{S_2};{\rm{ }}{S_3};{\rm{ }}{S_4};{\rm{ }}{S_5};{\rm{ }}{S_6};{\rm{ }}{S_7}\) lần lượt là điện tích của các hình vuông \(1;{\rm{ 2}};{\rm{ }}3;{\rm{ }}4;{\rm{ }}5;{\rm{ }}6;{\rm{ }}7\)

Theo nhận xét, ta có: Diện tích hình vuông bất kì bằng hai lần diện tích hình vuông có các đỉnh là trung điểm của các cạnh hình vuông đã cho.

Do đó ta có:

\({S_5} = 2{S_6} = 2.2{S_7} = 4{S_7} = 4.32 = 128\) \(\left( {c{m^2}} \right)\)

Vậy diện tích hình vuông thứ 5 là 128 \(c{m^2}\)

Cách khác:

Từ hình vuông đầu tiên, bạn Hùng vẽ hình vuông thứ hai có các đỉnh là trung điểm của các cạnh hình (ảnh 3)

Nhận xét:

Xét hình vuông \(ABCD\) có cạnh là \(a\). Gọi \(E,{\rm{ }}F,{\rm{ }}G,{\rm{ }}H\) lần lượt là trung điểm \(AB,{\rm{ }}BC,{\rm{ }}CD,{\rm{ }}DA\).

Khi đó hình vuông \[EFGH\] có các đỉnh là trung điểm của các cạnh hình vuông \(ABCD\).

\(EF = \sqrt {B{E^2} + B{F^2}}  = \sqrt {{{\left( {\frac{{BA}}{2}} \right)}^2} + {{\left( {\frac{{BC}}{2}} \right)}^2}}  = \sqrt {\frac{{{a^2}}}{4} + \frac{{{a^2}}}{4}}  = \frac{{\sqrt 2 a}}{2}\)

Khi đó \(\frac{{{S_{ABCD}}}}{{{S_{EFGH}}}} = \frac{{A{B^2}}}{{E{F^2}}} = \frac{{{a^2}}}{{\frac{{{a^2}}}{2}}} = 2\)

\( \Rightarrow {S_{ABCD}} = 2{S_{EFGH}}\).

Quay lại bài toán, gọi \({S_1};{\rm{ }}{S_2};{\rm{ }}{S_3};{\rm{ }}{S_4};{\rm{ }}{S_5};{\rm{ }}{S_6};{\rm{ }}{S_7}\) lần lượt là điện tích của các hình vuông \(1;{\rm{ 2}};{\rm{ }}3;{\rm{ }}4;{\rm{ }}5;{\rm{ }}6;{\rm{ }}7\)

Theo nhận xét, ta có: Diện tích hình vuông bất kì bằng hai lần diện tích hình vuông có các đỉnh là trung điểm của các cạnh hình vuông đã cho.

Do đó ta có:

\({S_5} = 2{S_6} = 2.2{S_7} = 4{S_7} = 4.32 = 128\) \(\left( {c{m^2}} \right)\)

Vậy diện tích hình vuông thứ 5 là 128 \(c{m^2}\)