Cho đường tròn \((O)\)và điểm \(A\) nằm bên ngoài đường tròn từ \(A\), vẽ hai tiếp tuyến\[AB\], \[AC\] (\[B\], \[C\] là hai tiếp điểm).
a) Chứng minh tứ giác \[ABOC\] nội tiếp.
b) Vẽ đường kính \[CE\], nối \[AE\] cắt đường tròn \((O)\)tại điểm thứ hai là \(F\).
Chứng minh \(A{B^2} = AE{\rm{\cdot}}AF\).
c) Cho \[OA\] cắt \[BC\] tại \[H\], \[BF\] cắt \[OA\] tại \(I\). Chứng minh \(I\) là trung điểm của \[AH\].
Cho đường tròn \((O)\)và điểm \(A\) nằm bên ngoài đường tròn từ \(A\), vẽ hai tiếp tuyến\[AB\], \[AC\] (\[B\], \[C\] là hai tiếp điểm).
a) Chứng minh tứ giác \[ABOC\] nội tiếp.
b) Vẽ đường kính \[CE\], nối \[AE\] cắt đường tròn \((O)\)tại điểm thứ hai là \(F\).
Chứng minh \(A{B^2} = AE{\rm{\cdot}}AF\).
c) Cho \[OA\] cắt \[BC\] tại \[H\], \[BF\] cắt \[OA\] tại \(I\). Chứng minh \(I\) là trung điểm của \[AH\].
Quảng cáo
Trả lời:
a) Xét tứ giác \(ABOC\) có:
\(\widehat {ABO} = \widehat {ACO} = 90^\circ \) (\(AB\), \(AC\) lần lượt là tiếp tuyến tại \(B\), \(C\) của \(\left( O \right)\))
\( \Rightarrow \widehat {ABO} + \widehat {ACO} = 180^\circ \)
Vậy tứ giác \(ABOC\) nội tiếp (Hai góc đối bù nhau)
b) Xét \(\Delta ABF\) và \(\Delta AEB\) có:
\(\widehat {BAF}\) là góc chung
\(\widehat {ABF} = \widehat {AEB}\)
Do đó \(\Delta ABF \sim \Delta AEB\) (g – g)
\[ \Rightarrow \frac{{AB}}{{AF}} = \frac{{AE}}{{AB}}\] (tính chất hai tam giác đồng dạng)
\( \Rightarrow A{B^2} = AE.AF\)
c) Xét \(\left( O \right)\) có \(AB\), \(AC\) lần lượt là tiếp tuyến tại \(B\), \(C\) của \(\left( O \right)\), \(OA \cap BC = H\)
\( \Rightarrow OA \bot BC\) tại \(H\)
Xét \(\Delta ABO\) vuông tại \(B\), đường cao \(BH\), ta có:
\(A{B^2} = AH.AO\)
Do đó \(AE.AF = AH.AO\) \(\left( { = A{B^2}} \right)\)
\( \Rightarrow \frac{{AE}}{{AH}} = \frac{{AO}}{{AF}}\)
Xét \(\Delta AEO\) và \(\Delta AHF\), ta có:
\(\widehat {HAF}\) là góc chung
\(\frac{{AE}}{{AH}} = \frac{{AO}}{{AF}}\)
Do đó \(\Delta AEO \sim \Delta AHF\) (c – g – c)
\( \Rightarrow \widehat {AEO} = \widehat {AHF}\) (Hai góc tương ứng)
Mà \(\widehat {AHF} + \widehat {FHO} = 180^\circ \) (hai góc kề bù)
nên \(\widehat {AEO} + \widehat {FHO} = 180^\circ \) hay \(\widehat {FEO} + \widehat {FHO} = 180^\circ \)
Suy ra tứ giác \(OHFE\) nội tiếp (Hai góc đối bù nhau)
\( \Rightarrow \widehat {HFE} + \widehat {HOE} = 180^\circ \) (Tính chất tứ giác nội tiếp)
Kéo dài \(AO\) cắt \(\left( O \right)\) tại \(K\) (\(O\) nằm giữa \(A\) và \(K\)ta có:\(\widehat {KOE} + \widehat {HOE} = 180^\circ \)
\( \Rightarrow \widehat {KOE} = \widehat {HFE}\) (Cùng bù \(\widehat {HOE}\))
Xét \(\left( O \right)\), ta có:
\(\widehat {EBC} = 90^\circ \) (Góc nội tiếp chắn nửa đường tròn)
\[ \Rightarrow EB \bot BC\]
Mặt khác, ta có:\( \Rightarrow OA \bot BC\) tại \(H\) (cmt)\( \Rightarrow AK \bot BC\)
Do đó: \(EB{\rm{ // }}AK\) (cùng vuông góc với \(BC\)) \( \Rightarrow \widehat {KOE} = \widehat {OEB}\) (Hai góc so le trong)
\( \Rightarrow \widehat {KOE} = \widehat {CEB}\)
Suy ra\(\widehat {HFE} = \widehat {CEB}{\rm{ }}\left( { = \widehat {KOE}} \right)\)
Xét \(\left( O \right)\), ta có: \(\widehat {BFE} = \widehat {BCE}\)
Trong \(\Delta EBC\) vuông tại \(B\), ta có: \(\widehat {BEC} + \widehat {BCE} = 90^\circ \)
Ta có:
\(\widehat {BFH} = \widehat {BFE} + \w\(HF\)idehat {HFE} = \widehat {BCE} + \widehat {BEC} = 90^\circ \)\( \Rightarrow HF \bot BI\) tại \(F\)
Xét \(\Delta BHI\) vuông tại \(H\), đường cao , ta có:
\(I{H^2} = IF.IB\) \(\left( 1 \right)\)
Xét \[\Delta IAF\] và \[\Delta IBA\], ta có:
\(\widehat {AIF}\) là góc chung
\(\widehat {IBA} = \widehat {IAF}\) (\(\widehat {IBA} = \widehat {BEF}\) cùng chắn cung \(BF\) của \(\left( O \right)\), \(\widehat {BEF} = \widehat {IAF}\)là hai góc so le trong của \(EB{\rm{ // }}AK\))
Vậy \[\Delta IAF \sim \Delta IBA\] (g – g)
\( \Rightarrow \frac{{IA}}{{IB}} = \frac{{IF}}{{IA}}\)
\( \Rightarrow I{A^2} = IF.IB\) \(\left( 2 \right)\)
Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) \( \Rightarrow I{H^2} = I{A^2}\)
\( \Rightarrow IH = IA\) hay \(I\) là trung điểm \(AH\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) \(A = \left( {\sqrt {27} - \sqrt {12} + \sqrt {48} } \right)\sqrt 3 \)
\[A = \left( {\sqrt {9.3} - \sqrt {4.3} + \sqrt {16.3} } \right)\sqrt 3 \]
\[A = \left( {3\sqrt 3 - 2\sqrt 3 + 4\sqrt 3 } \right)\sqrt 3 \]
\[A = 5\sqrt 3 .\sqrt 3 \]
\(A = 15\)
b) \(B = \left( {\frac{{\sqrt x }}{{\sqrt x - 1}} - \frac{1}{{x - \sqrt x }}} \right):\frac{{\sqrt x + 1}}{{3\sqrt x }}\) với \(0 < x\) và \(x \ne 1\).
\(B = \left( {\frac{{\sqrt x }}{{\sqrt x - 1}} - \frac{1}{{\sqrt x \left( {\sqrt x - 1} \right)}}} \right):\frac{{\sqrt x + 1}}{{3\sqrt x }}\)
\(B = \left( {\frac{{x - 1}}{{\sqrt x \left( {\sqrt x - 1} \right)}}} \right).\frac{{3\sqrt x }}{{\sqrt x + 1}}\)
\(B = \frac{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}{{\sqrt x \left( {\sqrt x - 1} \right)}}.\frac{{3\sqrt x }}{{\sqrt x + 1}}\)
\(B = 3\)
Lời giải
Gọi số xe nhỏ (chiếc) công ty đã thuê là \(x\), \(\left( {x \in \mathbb{N},{\rm{ }}x > 2} \right)\).
Do đó số xe lớn (chiếc) công ty dự định thuê là \(x - 2\).
Số xe lớn và nhỏ đều chở vừa hết 210 người nên:
Số người trên xe nhỏ là: \(\frac{{210}}{x}\) (người)
Số người trên xe lớn là: \(\frac{{210}}{{x - 2}}\) (người)
Theo đề mỗi xe nhỏ chở ít hơn mỗi xe lớn là 12 người, nên ta có phương trình:
\(\frac{{210}}{{x - 2}} - \frac{{210}}{x} = 12\)
\( \Leftrightarrow 210x - 210\left( {x - 2} \right) = 12x\left( {x - 2} \right)\)
\( \Leftrightarrow 210x - 210x + 420 = 12{x^2} - 24x\)
\( \Leftrightarrow 12{x^2} - 24x - 420 = 0\)
\( \Leftrightarrow 12\left( {x - 7} \right)\left( {x + 5} \right) = 0\)
\[ \Leftrightarrow \left[ \begin{array}{l}x - 7 = 0\\x + 5 = 0\end{array} \right.\]
\[ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 7{\rm{ }}}&{\left( {{\rm{Nha\"a n}}} \right)}\\{x = - 5}&{\left( {{\rm{Loa\"i i}}} \right)}\end{array}} \right.\]
Vậy công ty đã thuê 7 chiếc xe nhỏ.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

