Câu hỏi:

27/12/2025 35 Lưu

Giải phương trình và hệ phương trình sau:

a)  \({x^2} + 2x - 3 = 0\)                                       

b)  \(\left\{ {\begin{array}{*{20}{c}}{ - x + 3y = 5}\\{x + y = 3}\end{array}} \right.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a)  \({x^2} + 2x - 3 = 0\)                                       

Ta có: \(\Delta  = {2^2} - 4.1.\left( { - 3} \right) = 16 > 0\) \( \Rightarrow \sqrt \Delta   = \sqrt {16}  = 4\)

Do đó phương trình có hai nghiệm phân biệt

\({x_1} = \frac{{ - 2 - 4}}{{2.1}} =  - 3\)

\({x_2} = \frac{{ - 2 + 4}}{{2.1}} = 1\)

Vậy tập nghiệm phương trình \(S = \left\{ { - 3;{\rm{ 1}}} \right\}\)

Cách khác:

\({x^2} + 2x - 3 = 0\)                                            

Có \(a + b + c = 1 + 2 + \left( { - 3} \right) = 0\)

Nên \({x_1} = 1\)

\({x_2} = \frac{c}{a} = \frac{{ - 3}}{1} =  - 3\)

Vậy tập nghiệm phương trình \(S = \left\{ { - 3;{\rm{ 1}}} \right\}\)

b)  \(\left\{ {\begin{array}{*{20}{c}}{ - x + 3y = 5}\\{x + y = 3}\end{array}} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}4y = 8\\x + y = 3\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}y = 2\\x + 2 = 3\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}y = 2\\x = 1\end{array} \right.\)

Vậy tập nghiệm hệ phương trình \(S = \left\{ {\left( {1;{\rm{ }}2} \right)} \right\}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho đường tròn \((O)\)và điểm \(A\) nằm bên ngoài đường tròn từ \(A\), vẽ hai tiếp tuyến (ảnh 1)

a) Xét tứ giác \(ABOC\) có:

\(\widehat {ABO} = \widehat {ACO} = 90^\circ \) (\(AB\), \(AC\) lần lượt là tiếp tuyến tại \(B\), \(C\) của \(\left( O \right)\))

\( \Rightarrow \widehat {ABO} + \widehat {ACO} = 180^\circ \)

Vậy tứ giác \(ABOC\) nội tiếp (Hai góc đối bù nhau)

b) Xét \(\Delta ABF\) và \(\Delta AEB\) có:

\(\widehat {BAF}\) là góc chung

\(\widehat {ABF} = \widehat {AEB}\)

Do đó \(\Delta ABF \sim \Delta AEB\) (g – g)

\[ \Rightarrow \frac{{AB}}{{AF}} = \frac{{AE}}{{AB}}\] (tính chất hai tam giác đồng dạng)

\( \Rightarrow A{B^2} = AE.AF\)

c) Xét \(\left( O \right)\) có \(AB\), \(AC\) lần lượt là tiếp tuyến tại \(B\), \(C\) của \(\left( O \right)\), \(OA \cap BC = H\)

\( \Rightarrow OA \bot BC\) tại \(H\)

Xét \(\Delta ABO\) vuông tại \(B\), đường cao \(BH\), ta có:

\(A{B^2} = AH.AO\)

Do đó \(AE.AF = AH.AO\) \(\left( { = A{B^2}} \right)\)

\( \Rightarrow \frac{{AE}}{{AH}} = \frac{{AO}}{{AF}}\)

Xét \(\Delta AEO\) và \(\Delta AHF\), ta có:

\(\widehat {HAF}\) là góc chung

\(\frac{{AE}}{{AH}} = \frac{{AO}}{{AF}}\)

Do đó \(\Delta AEO \sim \Delta AHF\) (c – g – c)

\( \Rightarrow \widehat {AEO} = \widehat {AHF}\) (Hai góc tương ứng)

Mà \(\widehat {AHF} + \widehat {FHO} = 180^\circ \) (hai góc kề bù)

nên \(\widehat {AEO} + \widehat {FHO} = 180^\circ \) hay \(\widehat {FEO} + \widehat {FHO} = 180^\circ \)

Suy ra tứ giác \(OHFE\) nội tiếp (Hai góc đối bù nhau)

\( \Rightarrow \widehat {HFE} + \widehat {HOE} = 180^\circ \) (Tính chất tứ giác nội tiếp)

Kéo dài \(AO\) cắt \(\left( O \right)\) tại \(K\) (\(O\) nằm giữa \(A\) và \(K\)ta có:\(\widehat {KOE} + \widehat {HOE} = 180^\circ \)              

\( \Rightarrow \widehat {KOE} = \widehat {HFE}\) (Cùng bù \(\widehat {HOE}\))

Xét \(\left( O \right)\), ta có:

\(\widehat {EBC} = 90^\circ \) (Góc nội tiếp chắn nửa đường tròn)

       \[ \Rightarrow EB \bot BC\]

Mặt khác, ta có:\( \Rightarrow OA \bot BC\) tại \(H\) (cmt)\( \Rightarrow AK \bot BC\)

Do đó: \(EB{\rm{ // }}AK\) (cùng vuông góc với \(BC\)) \( \Rightarrow \widehat {KOE} = \widehat {OEB}\) (Hai góc so le trong)

\( \Rightarrow \widehat {KOE} = \widehat {CEB}\)

Suy ra\(\widehat {HFE} = \widehat {CEB}{\rm{ }}\left( { = \widehat {KOE}} \right)\)

Xét \(\left( O \right)\), ta có: \(\widehat {BFE} = \widehat {BCE}\)

Trong \(\Delta EBC\) vuông tại \(B\), ta có: \(\widehat {BEC} + \widehat {BCE} = 90^\circ \)

Ta có:

\(\widehat {BFH} = \widehat {BFE} + \w\(HF\)idehat {HFE} = \widehat {BCE} + \widehat {BEC} = 90^\circ \)\( \Rightarrow HF \bot BI\) tại \(F\)

Xét \(\Delta BHI\) vuông tại \(H\), đường cao , ta có:

\(I{H^2} = IF.IB\) \(\left( 1 \right)\)

Xét \[\Delta IAF\] và \[\Delta IBA\], ta có:

\(\widehat {AIF}\) là góc chung

\(\widehat {IBA} = \widehat {IAF}\) (\(\widehat {IBA} = \widehat {BEF}\) cùng chắn cung \(BF\) của \(\left( O \right)\), \(\widehat {BEF} = \widehat {IAF}\)là hai góc so le trong của \(EB{\rm{ // }}AK\))

Vậy \[\Delta IAF \sim \Delta IBA\] (g – g)

\( \Rightarrow \frac{{IA}}{{IB}} = \frac{{IF}}{{IA}}\)

\( \Rightarrow I{A^2} = IF.IB\) \(\left( 2 \right)\)

Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) \( \Rightarrow I{H^2} = I{A^2}\)

\( \Rightarrow IH = IA\) hay \(I\) là trung điểm \(AH\)

Lời giải

Từ hình vuông đầu tiên, bạn Hùng vẽ hình vuông thứ hai có các đỉnh là trung điểm của các cạnh hình (ảnh 2)

Nhận xét:

Xét hình vuông \(ABCD\), gọi \(E,{\rm{ }}F,{\rm{ }}G,{\rm{ }}H\) lần lượt là trung điểm \(AB,{\rm{ }}BC,{\rm{ }}CD,{\rm{ }}DA\).

Khi đó hình vuông \[EFGH\] có các đỉnh là trung điểm của các cạnh hình vuông \(ABCD\)

Dễ dàng nhận thấy\(\Delta AEH = \Delta BEH = \Delta CGF = \Delta DGH = \Delta OEH = \Delta OEF = \Delta OGF = \Delta OHG\) (c – c – c) (hoặc trường hợp hai cạnh góc vuông)

Do đó \({S_{ABCD}} = 8.{S_{\Delta OHG}}\), \({S_{EFGH}} = 4.{S_{\Delta OHG}}\)

\( \Rightarrow {S_{ABCD}} = 2{S_{EFGH}}\)

Quay lại bài toán, gọi \({S_1};{\rm{ }}{S_2};{\rm{ }}{S_3};{\rm{ }}{S_4};{\rm{ }}{S_5};{\rm{ }}{S_6};{\rm{ }}{S_7}\) lần lượt là điện tích của các hình vuông \(1;{\rm{ 2}};{\rm{ }}3;{\rm{ }}4;{\rm{ }}5;{\rm{ }}6;{\rm{ }}7\)

Theo nhận xét, ta có: Diện tích hình vuông bất kì bằng hai lần diện tích hình vuông có các đỉnh là trung điểm của các cạnh hình vuông đã cho.

Do đó ta có:

\({S_5} = 2{S_6} = 2.2{S_7} = 4{S_7} = 4.32 = 128\) \(\left( {c{m^2}} \right)\)

Vậy diện tích hình vuông thứ 5 là 128 \(c{m^2}\)

Cách khác:

Từ hình vuông đầu tiên, bạn Hùng vẽ hình vuông thứ hai có các đỉnh là trung điểm của các cạnh hình (ảnh 3)

Nhận xét:

Xét hình vuông \(ABCD\) có cạnh là \(a\). Gọi \(E,{\rm{ }}F,{\rm{ }}G,{\rm{ }}H\) lần lượt là trung điểm \(AB,{\rm{ }}BC,{\rm{ }}CD,{\rm{ }}DA\).

Khi đó hình vuông \[EFGH\] có các đỉnh là trung điểm của các cạnh hình vuông \(ABCD\).

\(EF = \sqrt {B{E^2} + B{F^2}}  = \sqrt {{{\left( {\frac{{BA}}{2}} \right)}^2} + {{\left( {\frac{{BC}}{2}} \right)}^2}}  = \sqrt {\frac{{{a^2}}}{4} + \frac{{{a^2}}}{4}}  = \frac{{\sqrt 2 a}}{2}\)

Khi đó \(\frac{{{S_{ABCD}}}}{{{S_{EFGH}}}} = \frac{{A{B^2}}}{{E{F^2}}} = \frac{{{a^2}}}{{\frac{{{a^2}}}{2}}} = 2\)

\( \Rightarrow {S_{ABCD}} = 2{S_{EFGH}}\).

Quay lại bài toán, gọi \({S_1};{\rm{ }}{S_2};{\rm{ }}{S_3};{\rm{ }}{S_4};{\rm{ }}{S_5};{\rm{ }}{S_6};{\rm{ }}{S_7}\) lần lượt là điện tích của các hình vuông \(1;{\rm{ 2}};{\rm{ }}3;{\rm{ }}4;{\rm{ }}5;{\rm{ }}6;{\rm{ }}7\)

Theo nhận xét, ta có: Diện tích hình vuông bất kì bằng hai lần diện tích hình vuông có các đỉnh là trung điểm của các cạnh hình vuông đã cho.

Do đó ta có:

\({S_5} = 2{S_6} = 2.2{S_7} = 4{S_7} = 4.32 = 128\) \(\left( {c{m^2}} \right)\)

Vậy diện tích hình vuông thứ 5 là 128 \(c{m^2}\)