Đề luyện thi Toán vào lớp 10 Hà Nội 2026 có đáp án - Đề 43
53 người thi tuần này 4.6 53 lượt thi 9 câu hỏi 120 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
Đề KSCL THCS Văn Quán - HN_năm học 2025-2026_Tháng 12 có đáp án
Đề KSCL THCS Phú Diễn - HN_năm học 2025-2026_Tháng 12 có đáp án
Đề KSCL THCS Lê Lợi - HN_năm học 2025-2026_Tháng 12 có đáp án
Đề KSCL THCS Thịnh Quang - HN_năm học 2025-2026_Tháng 9 có đáp án
Đề thi tuyển sinh vào lớp 10 môn Toán Sở GD&ĐT Đắk Nông năm học 2025-2026 có đáp án
Đề thi tuyển sinh vào lớp 10 môn Toán Sở GD&ĐT Bắc Kạn năm học 2025-2026 có đáp án
Đề thi tuyển sinh vào lớp 10 môn Toán Sở GD&ĐT Đắk Lắk năm học 2025-2026 có đáp án
Đề thi tuyển sinh vào lớp 10 môn Toán Sở GD&ĐT Long An năm học 2025-2026 có đáp án
Danh sách câu hỏi:
Đoạn văn 1
Lời giải
a) Trong mẫu số liệu trên, số liệu có giá trị nhỏ nhất là \[41\], số liệu có giá trị lớn nhất là \[59\]. Vì thế, ta có thể chọn nửa khoảng \[[40;\,\,60)\] sao cho giá trị của mỗi số liệu trong mẫu số liệu đều thuộc nửa khoảng \[[40;\,\,60)\]. Vì độ dài của nửa khoảng \[[40;\,\,60)\] bằng \[60 - 40 = 20\] nên ta có thể phân chia nửa khoảng đó thành bốn nửa khoảng có độ dài bằng nhau là: \[[40;\,\,45)\], \[[45;\,\,50)\], \[\,[50;\,\,55)\]\[\,[55 & ;\,\,60)\].
Vậy ta có thể ghép mẫu số liệu đã cho theo bốn nhóm ứng với bốn nửa khoảng đó.
b) Tốc độ của xe đi từ \[40\] \[{\rm{km/h}}\] đến dưới \[45\] \[{\rm{km/h}}\] là \[7\] xe;
Tốc độ của xe đi từ \[45\] \[{\rm{km/h}}\] đến dưới \[50\] \[{\rm{km/h}}\] là \[7\] xe;
Tốc độ của xe đi từ \[50\] \[{\rm{km/h}}\] đến dưới \[55\] \[{\rm{km/h}}\] là \[5\] xe;
Tốc độ của xe đi từ \[55\] \[{\rm{km/h}}\] đến dưới \[60\] \[{\rm{km/h}}\] là \[6\] xe.
Do đó ta có bảng tần số ghép nhóm
|
Tốc độ \[\left( {{\rm{km/h}}} \right)\] |
\[\left[ {40;{\rm{ }}45} \right)\] |
\[\left[ {45;{\rm{ 50}}} \right)\] |
\[\left[ {50;{\rm{ 55}}} \right)\] |
\[\left[ {55;{\rm{ 60}}} \right)\] |
|
Tần số |
\[7\] |
\[7\] |
\[5\] |
\[6\] |
Lời giải
- Không gian mẫu của phép thử “Viết ngẫu nhiên một số tự nhiên lẻ có 2 chữ số” là: \(\Omega = \left\{ {11;\,\,13;\,\,15;\,\,...;\,\,97;\,\,99} \right\}\)
- Số phần tử của tập hợp \(\Omega \) là: \(\frac{{99 - 11}}{2} + 1 = 45\) (phần tử)
- Các kết quả thuận lợi của biến cố \(A\): “Số tự nhiên viết ra là bình phương của \[1\] số tự nhiên” là:\(\left\{ {25;\,\,49;\,\,81} \right\}\). Biến cố này gồm \(3\) phần tử.
- Xác suất của biến cố A là: \(3:45 = \frac{1}{{15}}\)
Lời giải
1) Thay \(x = 0,49\) (thỏa mãn) vào \(M\), ta có: \(M = \frac{{\sqrt {0,49} - 1}}{{\sqrt {0,49} }} = \frac{{ - 3}}{7}\).
Vậy \(M = \frac{{ - 3}}{7}\) khi \(x = 0,49\)
2) \(P = \frac{{\sqrt x - 2}}{{\sqrt x + 1}} + \frac{{2 + 8\sqrt x }}{{x - 1}} - \frac{2}{{1 - \sqrt x }}\)
\(P = \frac{{\sqrt x - 2}}{{\sqrt x + 1}} + \frac{{2 + 8\sqrt x }}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}} + \frac{2}{{\sqrt x - 1}}\)
\(P = \frac{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 1} \right)}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}} + \frac{{2 + 8\sqrt x }}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}} + \frac{{2\left( {\sqrt x + 1} \right)}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\)
\(P = \frac{{x - 3\sqrt x + 2 + 2 + 8\sqrt x + 2\sqrt x + 2}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\)
\(P = \frac{{x + 7\sqrt x + 6}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}} = \frac{{\left( {\sqrt x + 6} \right)\left( {\sqrt x + 1} \right)}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}} = \frac{{\sqrt x + 6}}{{\sqrt x - 1}}\) (điểu phải chứng minh)
3) Xét \(Q = M.P + \frac{{x - 5}}{{\sqrt x }}\) suy ra \(Q = \frac{{\sqrt x - 1}}{{\sqrt x }}.\frac{{\sqrt x + 6}}{{\sqrt x - 1}} + \frac{{x - 5}}{{\sqrt x }} = \frac{{x + \sqrt x + 1}}{{\sqrt x }}\)
Xét hiệu \(Q - 3 = \frac{{x + \sqrt x + 1}}{{\sqrt x }} - 3 = \frac{{x - 2\sqrt x + 1}}{{\sqrt x }} = \frac{{{{\left( {\sqrt x - 1} \right)}^2}}}{{\sqrt x }}\)
Với \[x > 0;x \ne {\rm{ }}1\] thì \({\left( {\sqrt x - 1} \right)^2} \ge 0\) và \(\sqrt x > 0\) suy ra \(\frac{{{{\left( {\sqrt x - 1} \right)}^2}}}{{\sqrt x }} \ge 0\) hay \(Q \ge 3\)
Lời giải
Gọi \[x\;(x \ge 0)\] là số kg loại I cần sản xuất, \[y\;(y \ge 0)\] là số kg loại II cần sản xuất.
Suy ra số nguyên liệu cần dùng là \[2x + 4y\], thời gian là \[30x + 15y\], có mức lợi nhuận là \[40000x + 30000y\].
Theo giả thiết bài toán xưởng có \[200kg\] nguyên liệu và \[120\] giờ làm việc suy ra \[2x + 4y \le 200\;\]hay \[x + 2y - 100 \le 0\]và \[30x + 15y \le 1200\;\]hay \[2x + y - 80 \le 0\].
Bài toán trở thành: Tìm x, y thoả mãn hệ phương trình: \[\left\{ \begin{array}{l}x + 2y - 100 \le 0\\2x + y - 80 \le 0\end{array} \right.\] với \(x \ge 0\) và \(y \ge 0\)
sao cho \[L(x;y) = 40000x + 30000y\;\]đạt giá trị lớn nhất.
Trong mặt phẳng tọa độ vẽ các đường thẳng \[(d):x + 2y - 100 = 0,\;(d\prime ):2x + y - 80 = 0\].
Giá trị lớn nhất của \[L(x;y) = 40000x + 30000y\;\]đạt tại một trong các điểm \[\left( {0;0} \right),\;\left( {40;0} \right),\;\left( {0;50} \right),\;\left( {20;40} \right)\]
Ta có: \[L\left( {0;0} \right) = 0;\;L\left( {40;0} \right) = 1600000;\;L\left( {0;50} \right) = 1500000;L\left( {20;40} \right) = 2000000\] suy ra giá trị lớn nhất của \[L\left( {x;y} \right)\]là \[2\,000\,000\] khi \[\left( {x;y} \right) = \left( {20;40} \right)\].
Vậy cần sản xuất \[20\] kg sản phẩm loại I và \[40\;\]kg sản phẩm loại II để có mức lợi nhuận lớn nhất.
Đoạn văn 2
Lời giải
Số tiền cả gốc lẫn lãi sau một năm là: \(x + 0,06x = 1,06x\) (triệu đồng)
Số tiền cả gốc và lãi sau năm thứ hai là: \(1,06x.\left( {1 + 6\% } \right) = 1,1236x\) (triệu đồng)
Vì sau hai năm, bác Chín nhận được \(33,9\) triệu đồng cả gốc và lãi, nên ta có phương trình: \(1,1236x = 33,708\)
\(x = 33,708:1,1236 = 30\) (thỏa mãn)
Vậy số tiền ban đầu bác Chín gửi vào là \(30\) triệu đồng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đoạn văn 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

