Đề thi tuyển sinh vào lớp 10 môn Toán Sở GD&ĐT Long An năm học 2025-2026 có đáp án
7 người thi tuần này 4.6 7 lượt thi 13 câu hỏi 45 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
Đề thi tuyển sinh vào lớp 10 môn Toán Sở GD&ĐT Bến Tre năm học 2025-2026 có đáp án
Đề thi tuyển sinh vào lớp 10 môn Toán Sở GD&ĐT Lạng Sơn năm học 2025-2026 có đáp án
Đề thi tuyển sinh vào lớp 10 môn Toán Sở GD&ĐT Quảng Nam năm học 2025-2026 có đáp án
Đề thi tuyển sinh vào lớp 10 môn Toán Sở GD&ĐT Sơn La năm học 2025-2026 có đáp án
Đề thi tuyển sinh vào lớp 10 môn Toán Sở GD&ĐT Kiên Giang năm học 2025-2026 có đáp án
Đề thi tuyển sinh vào lớp 10 môn Toán Sở GD&ĐT Gia Lai năm học 2025-2026 có đáp án
Đề thi tuyển sinh vào lớp 10 môn Toán chuyên năm 2021-2022 sở GD&ĐT Hà Nam có đáp án
Danh sách câu hỏi:
Lời giải
Ta có \(A = 2\sqrt {27} + 5\sqrt {12} - 3\sqrt {48} \)
\(\begin{array}{*{20}{r}}{}&{\; = 6\sqrt 3 + 10\sqrt 3 - 12\sqrt 3 }\\{}&{\; = 4\sqrt 3 .}\end{array}\)
Lời giải
Với \(x \ge 0\) và \(x \ne 1\), ta có
\(A = \left( {\frac{1}{{\sqrt x - 1}} + \frac{1}{{\sqrt x + 1}}} \right) \cdot \left( {x - 1} \right)\)
\[\; = \frac{{\sqrt x + 1 + \sqrt x - 1}}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)}} \cdot \frac{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)}}{1} = 2\sqrt x .\]
Vậy với \(x \ge 0\) và \(x \ne 1\) thì \(A = 2\sqrt x \).
Lời giải
Bảng giá trị của hàm số \(y = \frac{1}{2}{x^2}\).
|
\(x\) |
-4 |
-2 |
0 |
2 |
4 |
|
\(y = \frac{1}{2}{x^2}\) |
8 |
2 |
0 |
2 |
8 |

Lời giải
Phương trình: \({x^2} + x - 6 = 0\) có \(a = 1,b = 1\) và \(c = - 6\).
Ta có \({\rm{\Delta }} = {b^2} - 4ac = {1^2} - 4 \cdot 1 \cdot \left( { - 6} \right) = 25 > 0\).
Vì \({\rm{\Delta }} > 0\) nên phương trình có hai nghiệm phân biệt
\(\begin{array}{*{20}{r}}{}&{{x_1} = \frac{{ - b + \sqrt {\rm{\Delta }} }}{{2a}} = \frac{{ - 1 + \sqrt {25} }}{{2 \cdot 1}} = 2;}\\{}&{{x_2} = \frac{{ - b - \sqrt {\rm{\Delta }} }}{{2a}} = \frac{{ - 1 - \sqrt {25} }}{{2 \cdot 1}} = - 3.}\end{array}\)
Lời giải
Ta có \({\rm{\Delta }} = {b^2} - 4ac = {( - 5)^2} - 4 \cdot 1 \cdot 6 = 1 > 0\).
Vì \({\rm{\Delta }} > 0\) nên phương trình có 2 nghiệm phân biệt \({x_1},{x_2}\).
Theo định lý Vi-ét, ta có \(\left\{ {\begin{array}{*{20}{l}}{{x_1} + {x_2} = 5}\\{{x_1}{x_2} = 6.}\end{array}} \right.\)
Xét biểu thức đề bài, ta lại có
\(\begin{array}{*{20}{r}}A&{\; = 3x_1^2{x_2} + 3{x_1}x_2^2}\\{}&{\; = 3{x_1}{x_2} \cdot \left( {{x_1} + {x_2}} \right)}\\{}&{\; = 3 \cdot 6 \cdot 5}\\{}&{\; = 90.}\end{array}\)
Vậy \(A = 90\).Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
