Câu hỏi:

29/08/2024 810

Cho Parabol \(\left( P \right):y = \frac{3}{4}{x^2}\) và đường thẳng \(\left( d \right):y = x + m\) với \(m\) là tham số.

1) Vẽ đồ thị của hàm số \(y = \frac{3}{4}{x^2}\).

2) Tìm điều kiện của tham số \(m\) để \(\left( d \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

1) Vẽ đồ thị của hàm số \(y = \frac{3}{4}{x^2}\).

Tập xác định \(D = \mathbb{R}\).

Bảng giá trị:

\(x\)

\( - 2\)

\( - 1\)

0

1

2

\(y = \frac{3}{4}{x^2}\)

3

\(\frac{3}{4}\)

0

\(\frac{3}{4}\)

3

Đồ thị hàm số \(y = \frac{3}{4}{x^2}\) là Parabol nhận \[Oy\] làm trục đối xứng, có đỉnh \(O\left( {0\,;\,\,0} \right)\), bề lõm hướng lên và đi qua các điểm \(\left( { - 1\,;\,\,\frac{3}{4}} \right),\,\,\left( {1\,;\,\,\frac{3}{4}} \right),\,\)\(\,\left( { - 2\,;\,\,3} \right),\,\,\left( {2\,;\,\,3} \right).\)
Ta có đồ thị hàm số
Cho Parabol P:y = 3/4x^2 và đường thẳng d:y= x + m với m là tham số.  1) Vẽ đồ thị của hàm số \y = 3/4x^2.  2) Tìm điều kiện của tham số (ảnh 1)

2) Hoành độ giao điểm của \(\left( P \right)\) và \(\left( d \right)\) là nghiệm của phương trình:

\(\frac{3}{4}{x^2} = x + m\) hay \(\frac{3}{4}{x^2} - x - m = 0\).

Để \(\left( d \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt thì phương trình trên phải có hai nghiệm phân biệt

Hay \(\Delta  = {( - 1)^2} - 4 \cdot \frac{3}{4}( - m) = 1 + 3m > 0\) hay \(m > \frac{{ - 1}}{3}\).

Vậy với \(m > \frac{{ - 1}}{3}\) thì \(\left( d \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \[x\,\,\left( {\rm{m}} \right)\] là chiều dài ban đầu của khu vườn hình chữ nhật \[\left( {0 < x < 100} \right)\].

Khi đó nửa chu vi khu vườn hình chữ nhật là: \(200:2 = 100\,\,\left( m \right).\)

Chiều rộng ban đầu của khu vườn là \(100 - x\,\,\left( {\rm{m}} \right)\).

Chiều dài khu vườn sau khi giảm \(8\,\,{\rm{m}}\) là \(x - 8\,\,\left( {\rm{m}} \right)\).

Diện tích của khu vườn sau khi giảm là: \[\left( {x - 8} \right)\left( {100 - x} \right) = 2\,\,080\]

\[ - {x^2} + 108x - 800 = 2\,\,080\]

\[{x^2} - 108x + 2\,\,880 = 0\]

\(x = 60\) hoặc \(x = 48\).

• Với \(x = 60\) hay chiều dài ban đầu của khu vườn là \(60\,\,{\rm{m}}\) thì

Chiều rộng ban đầu của khu vườn là \(100 - 60 = 40\,\,\left( {\rm{m}} \right)\) (thỏa mãn).

• Với \(x = 48\) hay chiều dài ban đầu của khu vườn là \(60\,\,{\rm{m}}\) thì

Chiều rộng ban đầu của khu vườn là \(100 - 48 = 52\,\,\left( {\rm{m}} \right)\) (loại vì chiều dài phải lớn hơn chiều rộng).

Vậy chiều dài ban đầu của khu vườn là \(60\,\,{\rm{m}}\) và chiều rộng ban đầu của khu vườn là \(40\,\,{\rm{m}}{\rm{.}}\)

Lời giải

Cho đường tròn tâm O đường kính AB và M là điểm chính giữa của cung AB. Lấy điểm D thuộc dây MB, D khác M và B Tia AD cắt cung nhỏ  (ảnh 1)

1) Do \(\widehat {AMB} = \widehat {ANB} = 90^\circ \) (các góc nội tiếp chắn nửa đường tròn) nên \(\widehat {CMB} = \widehat {CND} = 90^\circ .\)

Xét tứ giác \[CMDN\] có

\[\widehat {CMD} + \widehat {CND} = 90^\circ  + 90^\circ  = 180^\circ .\]

Mà hai góc này ở vị trí đối diện nên tứ giác \[CMDN\] nội tiếp được trong đường tròn.

2) Xét \(\Delta AMD\) và \(\Delta ANC\) có \(\widehat {NAC}\) chung; \(\widehat {AMD} = \widehat {ANC} = 90^\circ .\)

Do đó , suy ra \(\frac{{AM}}{{AN}} = \frac{{AD}}{{AC}}\) hay \(AM \cdot AC = AN \cdot AD\).

3) Do \[ABNM\] nội tiếp \(\left( O \right)\) nên \(\widehat {BAM} + \widehat {BNM} = 180^\circ \).

Mà \(\widehat {BNM} + \widehat {CNM} = 180^\circ \) (hai góc kề bù) nên \(\widehat {CNM} = \widehat {BAM}\).

Mà \[\widehat {CNM} = \widehat {MCD}\] (góc nội tiếp cùng chắn cung

Suy ra \(\widehat {MCD} = \widehat {OMB}\,\,\left( { = \widehat {CNM}} \right)\) hay \(\widehat {MCD} = \widehat {OMB}.\)

4) Do \[M\] là điểm chính giữa cung \[AB\] nên \(MA = MB\).

Suy ra \(\widehat {MNA} = \widehat {MAB}\) (góc nội tiếp chắn hai cung bằng nhau).

Xét \(\Delta MAN\) và \(\Delta MAE\) có \(\widehat {AME}\) chung; \(\widehat {MNA} = \widehat {MAE}\,\,({\rm{cmt}})\).

Do đó .

Suy ra \(\widehat {MAN} = \widehat {MEA}\) (hai góc tương ứng).

Mà \[\widehat {MAN} = \widehat {MBN}\] (góc nội tiếp cùng chắn  nên \(\widehat {MBN} = \widehat {MEB}\).

Do đó \(\widehat {DBN} = \widehat {NEB}\) (đpcm).

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay