Đề luyện thi Toán vào lớp 10 Hà Nội 2026 có đáp án - Đề 9
72 người thi tuần này 4.6 72 lượt thi 10 câu hỏi 120 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
Đề thi tuyển sinh vào lớp 10 môn Toán Sở GD&ĐT Đắk Nông năm học 2025-2026 có đáp án
Đề thi tuyển sinh vào lớp 10 môn Toán Sở GD&ĐT Bắc Kạn năm học 2025-2026 có đáp án
Đề thi tuyển sinh vào lớp 10 môn Toán Sở GD&ĐT Đắk Lắk năm học 2025-2026 có đáp án
Đề thi tuyển sinh vào lớp 10 môn Toán Sở GD&ĐT Long An năm học 2025-2026 có đáp án
Đề thi tuyển sinh vào lớp 10 môn Toán Sở GD&ĐT Thanh Hóa năm học 2025-2026 có đáp án
Đề thi tuyển sinh vào lớp 10 môn Toán Sở GD&ĐT Lào Cai năm học 2025-2026 có đáp án
Đề thi tuyển sinh vào lớp 10 môn Toán Sở GD&ĐT Trà Vinh năm học 2025-2026 có đáp án
Đề thi tuyển sinh vào lớp 10 môn Toán Sở GD&ĐT Yên Bái năm học 2025-2026 có đáp án
Danh sách câu hỏi:
Đoạn văn 1
Lời giải
Từ bảng tần số trên ta thấy có \(12\) học viên đạt điểm từ \(\left[ {7,5;10} \right)\).
Vậy có 12 học viên xếp loại \(A\).
Lời giải
Không gian mẫu của phép thử là \(\Omega = \left\{ {10;\,11;\,12;\,13;\,14.........\,96;\,97;\,98;\,99} \right\}\). Tập \(\Omega \) có \(90\) phần tử.
Vì các chữ số bạn Linh viết một cách ngẫu nhiên khả năng các số được viết ra là đồng khả năng.
Gọi \(A\) là tập hợp các kết quả thuận lợi của biến cố \(F\)
Suy ra\(A = \left\{ {12;\,16;\,20;\,24;\,.........88;92;96} \right\}\).
Số phần tử của tập \(A\) là \(\frac{{96 - 12}}{4} + 1 = 22\). (Công thức tính số số hạng của dãy số)
Vậy \(P\left( F \right) = \frac{{22}}{{90}} = \frac{{11}}{{45}}\).
Đoạn văn 2
Lời giải
Ta có \(x = 16\) (thỏa mãn điều kiện), thay vào biểu thức \(A\) ta có:
\(A = \frac{{16 + 2\sqrt {16} + 5}}{{\sqrt {16} - 3}} = \frac{{29}}{1} = 29\)
Vậy khi \(x = 16\) thì \(A = 29\)
Lời giải
a) Ta có \(P = \frac{{\sqrt x + 2}}{{\sqrt x + 3}} - \frac{5}{{x + \sqrt x - 6}} - \frac{1}{{\sqrt x - 2}}\)
\( = \frac{{\sqrt x + 2}}{{\sqrt x + 3}} - \frac{5}{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 2} \right)}} - \frac{1}{{\sqrt x - 2}}\)
\( = \frac{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right) - 5 - \left( {\sqrt x + 3} \right)}}{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 2} \right)}}\)
\( = \frac{{x - 4 - 5 - \sqrt x - 3}}{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 2} \right)}} = \frac{{x - \sqrt x - 12}}{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 2} \right)}}\)
\( = \frac{{\left( {\sqrt x - 4} \right)\left( {\sqrt x + 3} \right)}}{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 2} \right)}} = \frac{{\sqrt x - 4}}{{\sqrt x - 2}}\)
Vậy khi \(x \ge 0;x \ne 4\), thì \(P = \frac{{\sqrt x - 4}}{{\sqrt x - 2}}\)(điều phải chứng minh).
b) Ta có \(P = \frac{{\sqrt x - 4}}{{\sqrt x - 2}}\) với điều kiện \(x \ge 0;x \ne 4\)
+ Để \({P^2} > P\) thì \(P\left( {P - 1} \right) > 0\)
\(\frac{{\sqrt x - 4}}{{\sqrt x - 2}}.\left( {\frac{{\sqrt x - 4}}{{\sqrt x - 2}} - 1} \right) > 0\) hay \(\frac{{ - 2\left( {\sqrt x - 4} \right)}}{{{{\left( {\sqrt x - 2} \right)}^2}}} > 0\)
\( - 2\left( {\sqrt x - 4} \right) > 0\) (vì \({\left( {\sqrt x - 2} \right)^2} > 0\,\,\forall x\) thỏa mãn điều kiện xác định)
\(\begin{array}{l}\sqrt x - 4 < 0\\x < 16\end{array}\)
Kết hợp với điều kiện ta được \(\left\{ \begin{array}{l}0 < x < 16\\x \ne 4\end{array} \right.\)
Vậy khi \(\left\{ \begin{array}{l}0 < x < 16\\x \ne 4\end{array} \right.\) thì \({P^2} > P\).
Đoạn văn 3
Lời giải
Gọi số bước chân anh Sơn và chị Hà đi được trong 1 phút lần lượt là x và y \(\left( {x,y \in {\mathbb{N}^*}} \right).\)
Vì nếu cùng đi trong 2 phút thì anh Sơn bước nhiều hơn chị Hà 20 bước nên ta có phương trình \(2x - 2y = 20\) (1).
Vì nếu chị Hà đi trong 5 phút thì lại nhiều hơn anh Sơn đi trong 3 phút là 160 bước từ đó ta có \(5y - 3x = 160\) (2).
Từ (1) và (2) suy ra x = 105 và y = 95.
Vậy trong một giờ anh Sơn đi được \(105.60 = 6300\)
trong một giờ chị Hà đi được \(95.60 = 5700\).
Do anh Sơn và chị Hà đề ra mục tiêu mỗi ngày một người phải đi bộ ít nhất 6000 bước nên anh Sơn đã đạt được mục tiêu tối thiểu mà mình đề ra, còn chị Hà thì chưa.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đoạn văn 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

