Bác Tư đến siêu thị mua một cái quạt máy và một ấm đun siêu tốc với tổng số tiền theo giá niêm yết là 630000 đồng. Tuy nhiên, trong tuần lễ tri ân khách hàng nên siêu thị đã giảm giá quạt máy 15% và giảm giá ấm đun siêu tốc 12% so với giá niêm yết của từng sản phẩm. Nên Bác Tư chỉ phải trả 543000 đồng khi mua hai sản phẩm trên. Hỏi giá niêm yết (khi chưa giảm giá) của một cái quạt máy và một ấm đun siêu tốc là bao nhiêu ?
Bác Tư đến siêu thị mua một cái quạt máy và một ấm đun siêu tốc với tổng số tiền theo giá niêm yết là 630000 đồng. Tuy nhiên, trong tuần lễ tri ân khách hàng nên siêu thị đã giảm giá quạt máy 15% và giảm giá ấm đun siêu tốc 12% so với giá niêm yết của từng sản phẩm. Nên Bác Tư chỉ phải trả 543000 đồng khi mua hai sản phẩm trên. Hỏi giá niêm yết (khi chưa giảm giá) của một cái quạt máy và một ấm đun siêu tốc là bao nhiêu ?
Quảng cáo
Trả lời:
Gọi giá tiền niêm yết (khi chưa giảm giá) của một cái quạt máy và một ấm đun siêu tốc là \(x,\,y\,\left( {x > 0,\,y > 0} \right)\) (đồng).
Ta có phương trình \(x + y = 630000\).
Giá tiền quạt máy sau khi giảm giá là \(x - 15\% x = 85\% x = 0,85x\).
Giá tiền ấm siêu tốc sau khi giảm giá là \(y - 12\% y = 88\% y = 0,88y\).
Ta có phương trình \(0,85x + 0,88y = 543000\).
Giải hệ \(\left\{ \begin{array}{l}x + y = 630000\\0,85x + 0,88y = 543000\end{array} \right.\)
\(\left\{ \begin{array}{l}x + y = 630000\\0,85x + 0,88y = 543000\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}0,88x + 0,88y = 554400\\0,85x + 0,88y = 543000\end{array} \right. \Leftrightarrow \) \(\left\{ \begin{array}{l}0,03x = 11400\\x + y = 630000\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 380000\\380000 + y = 630000\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 380000\\y = 250000\end{array} \right.\)
Vậy giá tiền niêm yết (khi chưa giảm giá) của một cái quạt máy và một ấm đun siêu tốc là 380000 (đồng) và 250000 (đồng).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
1) Ta có CH ^ BD Þ H nhìn CD dưới một góc vuông (1)
Theo tính chất hai tiếp tuyến cắt nhau CD và BD, ta có DC = DB
Hai bán kính OC = OB
Þ OD là trung trực của BC Þ OD ^ CB
Þ N nhìn CD dưới một góc vuông (2)
Từ (1) và (2) Þ tứ giác CNHD nội tiếp được trong đường tròn.

2) Theo tính chất hai tiếp tuyến cắt nhau CD và BD, ta có DC = DB, ta có \(\widehat {{D_1}} = \widehat {{D_2}}\)
Theo tính chất tiếp tuyến và giả thiết, ta có góc \(\widehat {COD} = \widehat {DMH}\) (cùng phụ với hai góc bằng nhau\(\widehat {{D_1}} = \widehat {{D_2}}\))
Mặt khác \(\widehat {DMH} = \widehat {CMO}\) (đối đỉnh) Þ \(\widehat {COD} = \widehat {CMO}\)
DCOM có \(\widehat {COM} = \widehat {CMO}\) Þ cân tại C Þ \(CM = CO\).
3) DEAC và DECB có góc E chung và góc \(\widehat {ECA} = \widehat {CBA}\) (cùng chắn cung AC)
Þ đồng dạng Þ \(\frac{{EA}}{{EC}} = \frac{{EC}}{{EB}} \Rightarrow EA.EB = E{C^2}\).
4) Hình nón được tạo bởi tam giác vuông DNB quay quanh DN
Þ bán kính \(r = NB\) và chiều cao \(h = ND\).
Theo Pitago cho tam giác vuông BOD: \(OD = \sqrt {O{B^2} + B{D^2}} = \sqrt {36 + 64} = 10cm\).
Theo hệ thức lượng trong tam giác vuông BOD, ta có: \(BN.OD = OB.BD \Rightarrow BN = \frac{{6.8}}{{10}} = 4,8cm\).
Và \(B{D^2} = DN.DO \Rightarrow DN = \frac{{64}}{{10}} = 6,4cm\)
Thể tích của hình nón tạo thành \(V = \frac{1}{3}\pi .{r^2}.h = \frac{1}{3}\pi .{(4,8)^2}.6,4 = \frac{{6144}}{{125}}\pi \approx 154,4156\,\left( {c{m^3}} \right)\).
Lời giải
1) Phương trình \({x^2} - 2(m + 1)x + {m^2} + m = 0\) có hai nghiệm phân biệt khi \(\Delta ' = {m^2} + 2m + 1 - {m^2} - m = m + 1 > 0 \Leftrightarrow m > - 1\).
Vậy \(m > - 1\) thì phương trình \({x^2} - 2(m + 1)x + {m^2} + m = 0\) có hai nghiệm phân biệt.
2) \({x^2} - 2(m + 1)x + {m^2} + m = 0\)
Ta có \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2(m + 1)\\{x_1}.{x_2} = {m^2} + m\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m = \frac{{{x_1} + {x_2}}}{2} - 1\\{x_1}{x_2} = {\left( {\frac{{{x_1} + {x_2}}}{2} - 1} \right)^2} + \frac{{{x_1} + {x_2}}}{2} - 1\end{array} \right.\) Þ \({\left( {{x_1} + {x_2}} \right)^2} - 2\left( {{x_1} + {x_2}} \right) - 4{x_1}{x_2} = 0\) là hệ thức liên hệ giữa \({x_1}\) và \({x_2}\) mà không phụ thuộc vào tham số m.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.