Cho hai đường thẳng \({d_1}:ax + by + c = 0\) và \({d_2}:mx + ny + p = 0\), biết \({d_1}\,{\rm{v\`a }}\,{d_2}\)vuông góc với nhau, khẳng định nào sau đây là đúng ?
Cho hai đường thẳng \({d_1}:ax + by + c = 0\) và \({d_2}:mx + ny + p = 0\), biết \({d_1}\,{\rm{v\`a }}\,{d_2}\)vuông góc với nhau, khẳng định nào sau đây là đúng ?
A. Hệ phương trình \(\left\{ \begin{array}{l}ax + by + c = 0\\mx + ny + p = 0\end{array} \right.\) có vô số nghiệm;
B. Hệ phương trình \(\left\{ \begin{array}{l}ax + by + c = 0\\mx + ny + p = 0\end{array} \right.\) vô nghiệm;
C. Hệ phương trình \(\left\{ \begin{array}{l}ax + by + c = 0\\mx + ny + p = 0\end{array} \right.\) có duy nhất một nghiệm;
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 2 Toán 10 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: C
Cho hai đường thẳng \({d_1}:ax + by + c = 0\) và \({d_2}:mx + ny + p = 0\), biết \({d_1} \bot {d_2}\) hay \({d_1}\) cắt \({d_2}\) tại 1 điểm, do đó, hệ phương trình \(\left\{ \begin{array}{l}ax + by + c = 0\\mx + ny + p = 0\end{array} \right.\) có duy nhất một nghiệm.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. Công việc có thể được thực hiện bằng \(m.n\) cách;
B. Công việc có thể được thực hiện bằng \(\frac{1}{2}.m.n\) cách;
C. Công việc có thể được thực hiện bằng \(m + n\) cách;
Lời giải
Đáp án đúng là: A
Vì công việc được tiến hành theo hai công đoạn \(A\) và \(B\) nên theo quy tắc nhân ta có công việc có thể được thực hiện bằng \(m.n\) cách.
Câu 2
Lời giải
Đáp án đúng là: C
Một chỉnh hợp chập \[k\] của \[n\] là một cách sắp xếp có thứ tự \[k\] phần tử từ một tập hợp \[n\] phần tử (với \[k,\,n\] là các số tự nhiên, \[1 \le k \le n\]).
Số các chỉnh hợp chập \[k\] của \[n\], kí hiệu là \[A_n^k\] và được tính bằng công thức: \[A_n^k = \frac{{n!}}{{\left( {n - k} \right)!}}\].
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.