Tìm số hạng chứa \[{x^2}\] trong khai triển \[{\left( {\frac{1}{x} + {x^3}} \right)^{n + 1}}\] với \[x \ne 0\], biết \[n\] là số nguyên dương thỏa mãn \[3C_{n + 1}^2 + n{P_2} = 4A_n^2\].
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 2 Toán 10 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Ta có: \[3C_{n + 1}^2 + n{P_2} = 4A_n^2\] (điều kiện \(n \ge 2,n \in \mathbb{N}\))
\[ \Leftrightarrow 3.\frac{{\left( {n + 1} \right)!}}{{2\left( {n - 1} \right)!}} + 2n = 4.\frac{{n!}}{{\left( {n - 2} \right)!}}\]
\[ \Leftrightarrow 3.\frac{{\left( {n + 1} \right).n.\left( {n - 1} \right)!}}{{\left( {n - 1} \right)!}} + 4n = 8.\frac{{n.\left( {n - 1} \right).\left( {n - 2} \right)!}}{{\left( {n - 2} \right)!}}\]
\[ \Leftrightarrow 3n.\left( {n + 1} \right) + 4n = 8n.\left( {n - 1} \right)\]
\[ \Leftrightarrow 5{n^2} - 15n = 0\]
\[ \Leftrightarrow \left[ \begin{array}{l}n = 0\\n = 3\left( {tmdk} \right)\end{array} \right.\]
Với \[n = 3\], ta có:
\[{\left( {\frac{1}{x} + {x^3}} \right)^{n + 1}} = {\left( {\frac{1}{x} + {x^3}} \right)^4}\]
\[ = {\left( {\frac{1}{x}} \right)^4} + 4x.{\left( {\frac{1}{x}} \right)^3} + 6{x^2}.{\left( {\frac{1}{x}} \right)^2} + 4{x^3}.\left( {\frac{1}{x}} \right) + {x^4}\]
\[ = \frac{1}{{{x^4}}} + 4.\frac{1}{{{x^2}}} + 6 + 4{x^2} + {x^4}\].
Vậy số hạng chứa \[{x^2}\] là: \[4{x^2}\].
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: C
Ta có: \[\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}} = \frac{{1.\left( { - 1} \right) + \left( { - 2} \right).\left( { - 3} \right)}}{{\sqrt {{1^2} + {{\left( { - 2} \right)}^2}} .\sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - 3} \right)}^2}} }} = \frac{5}{{\sqrt 5 .\sqrt {10} }} = \frac{1}{{\sqrt 2 }} \Rightarrow \left( {\overrightarrow a ,\overrightarrow b } \right) = 45^\circ \].
Câu 2
Lời giải
Đáp án đúng là: D
Ta có: \(\overrightarrow {AB} = \left( {3;7} \right);\overrightarrow {AC} = \left( {5;4} \right) \Rightarrow \overrightarrow v = \overrightarrow {AB} + \overrightarrow {AC} = \left( {3 + 5;\,7 + 4} \right) = \left( {8;11} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(\overrightarrow {NM} = \left( {4;\,\, - 3} \right)\);
B. \(\overrightarrow {NM} = \left( {2;\,\,1} \right)\);
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.