Câu hỏi:

29/12/2025 141 Lưu

PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng (Đ) hoặc sai (S).

Cho hàm số \(f\left( x \right) = {\log _3}\left( {2x - 3} \right)\).

a) [TH] Tập xác định của hàm số là \[\left[ {\frac{3}{2}\,;\, + \infty } \right)\].
Đúng
Sai
b) [TH] \(f'\left( x \right) = \frac{2}{{\left( {2x - 3} \right)\ln 3}},\forall x \in \left( {\frac{3}{2}\,;\, + \infty } \right)\)
Đúng
Sai
c) [TH] Phương trình \(f\left( x \right) = {\log _3}\left( {{x^2} - x - 1} \right)\) có hai nghiệm phân biệt.
Đúng
Sai
d) [VD] Gọi \(S\) là tập hợp tất cả các nghiệm nguyên của bất phương trình \(f\left( x \right) \le 4\). Tổng tất cả các phần tử của \(S\) bằng 903.
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Điều kiện xác định: \(2x - 3 > 0 \Leftrightarrow x > \frac{3}{2}\).

Tập xác định của hàm số là \[\left( {\frac{3}{2}\,;\, + \infty } \right)\].

Chọn SAI.

b) Đạo hàm: \(f'\left( x \right) = \frac{2}{{\left( {2x - 3} \right)\ln 3}},\forall x \in \left( {\frac{3}{2}\,;\, + \infty } \right)\).

Chọn ĐÚNG.

c) \[f\left( x \right) = {\log _3}\left( {{x^2} - x - 1} \right)\]

\[ \Leftrightarrow {\log _3}\left( {2x - 3} \right) = {\log _3}\left( {{x^2} - x - 1} \right)\]

\[ \Leftrightarrow \left\{ \begin{array}{l}2x - 3 = {x^2} - x - 1\\2x - 3 > 0\end{array} \right.\]

\[ \Leftrightarrow \left\{ \begin{array}{l}{x^2} - 3x + 2 = 0\\x > \frac{3}{2}\end{array} \right.\]

\[ \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}x = 1\\x = 2\end{array} \right.\\x > \frac{3}{2}\end{array} \right. \Leftrightarrow x = 2\].

Vậy phương trình có một nghiệm\[x = 2\] .

Chọn SAI.

d) \(f\left( x \right) \le 4 \Leftrightarrow {\log _3}\left( {2x - 3} \right) \le 4\)

\[ \Leftrightarrow \left\{ \begin{array}{l}2x - 3 \le 81\\2x - 3 > 0\end{array} \right.\]

\( \Leftrightarrow \left\{ \begin{array}{l}x \le 42\\x > \frac{3}{2}\end{array} \right. \Leftrightarrow \frac{3}{2} < x \le 42\).

Kết hợp với điều kiện \(x \in \mathbb{Z}\) \( \Rightarrow S = \left\{ {2\,;\,3\,;\,4\,;\,...\,;\,42} \right\}\)

Tổng các phần tử của \(S\) bằng \(2 + 3 + 4 + ... + 42 = \frac{{41}}{2}.\left( {2 + 42} \right) = 902\).

Chọn SAI.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: 1,65.

Đặt \(\widehat {CAB} = \varphi \left( {rad} \right)\), \(\,\,\varphi  \in \left( {0\,;\,\,\frac{\pi }{2}} \right)\).

Một bể bơi hình bán nguyệt có đường kính là \(AB (ảnh 2)

Ta có \(\Delta ABC\) vuông tại \(C\) \( \Rightarrow AC = AB.\cos \varphi  = 0,1\cos \varphi \).

Mà \(\widehat {COR} = 2\widehat {CAB} = 2\varphi \).

Độ dài cung tròn .

Tổng thời gian người này di chuyển từ \(A\) đến \(C\) và đến B là:  với \(\,\,\varphi  \in \left( {0\,;\,\,\frac{\pi }{2}} \right)\).

\( \Rightarrow t'\left( \varphi  \right) =  - \frac{1}{{50}}\sin \varphi  + \frac{1}{{60}} = 0 \Leftrightarrow \sin \varphi  = \frac{5}{6} \Rightarrow \varphi  \approx 0,985\) rad.

Bảng biến thiên

Một bể bơi hình bán nguyệt có đường kính là \(AB (ảnh 3)

Vậy thời gian tối đa để di chuyển từ \(A\) đến \(C\)và đến B là \(t\left( {0,985} \right) = 0,027\)(giờ)\( \simeq 1,65\)phút.

Câu 2

a) [NB] Giả sử \(\overrightarrow {A'M} = x.\overrightarrow {AB} + y.\overrightarrow {AC} + z.\overrightarrow {AA'} \) thì \(x + y = z\).
Đúng
Sai
b) [TH] \(\overrightarrow {NB} = - 2\overrightarrow {NB'} \).
Đúng
Sai
c) [TH] \(\overrightarrow {AB} + \overrightarrow {CC'} = \overrightarrow {AB'} \).
Đúng
Sai
d) [VD,VDC] \(\overrightarrow {A'M} .\overrightarrow {C'N} = \frac{{4{a^2}}}{3}\).
Đúng
Sai

Lời giải

a) Sai.

Ta có: \(\overrightarrow {A'M}  = \frac{1}{2}\left( {\overrightarrow {A'B}  + \overrightarrow {A'C} } \right)\)\( = \frac{1}{2}\left( {\overrightarrow {A'A}  + \overrightarrow {A'B'}  + \overrightarrow {A'A}  + \overrightarrow {A'C'} } \right) = \overrightarrow {A'A}  + \frac{1}{2}\overrightarrow {A'B'}  + \frac{1}{2}\overrightarrow {A'C'} \)\( = \frac{1}{2}.\overrightarrow {AB}  + \frac{1}{2}.\overrightarrow {AC}  - \overrightarrow {AA'} \). Suy ra \(x = y = \frac{1}{2};z =  - 1 \Rightarrow x + y =  - z\).

b) Đúng.

Ta có: \(\overrightarrow {BN}  = \frac{2}{3}\overrightarrow {BB'}  \Leftrightarrow \overrightarrow {BN}  = \frac{2}{3}\left( {\overrightarrow {BN}  + \overrightarrow {NB'} } \right) \Leftrightarrow \overrightarrow {BN}  = 2\overrightarrow {NB'}  \Leftrightarrow \overrightarrow {NB}  =  - 2\overrightarrow {NB'} \).

c) Đúng.

Ta có: \(\overrightarrow {AB}  + \overrightarrow {CC'}  = \overrightarrow {AB}  + \overrightarrow {BB'}  = \overrightarrow {AB'} \).

d) Đúng.

Ta có:\(\overrightarrow {C'N}  = \overrightarrow {C'B'}  + \overrightarrow {B'N}  = \overrightarrow {A'B'}  - \overrightarrow {A'C'}  + \frac{1}{3}\overrightarrow {B'B}  = \overrightarrow {AB}  - \overrightarrow {AC}  - \frac{1}{3}\overrightarrow {AA'} \)\( \Rightarrow \overrightarrow {A'M} .\overrightarrow {C'N}  = \left( {\frac{1}{2}.\overrightarrow {AB}  + \frac{1}{2}.\overrightarrow {AC}  - \overrightarrow {AA'} } \right).\left( {\overrightarrow {AB}  - \overrightarrow {AC}  - \frac{1}{3}\overrightarrow {AA'} } \right)\)\( = \frac{1}{2}A{B^2} - \frac{1}{2}\overrightarrow {AB} .\overrightarrow {AC}  - \frac{1}{6}\overrightarrow {AB} .\overrightarrow {AA'}  + \frac{1}{2}\overrightarrow {AC} .\overrightarrow {AB}  - \frac{1}{2}A{C^2} - \frac{1}{6}\overrightarrow {AC} .\overrightarrow {AA'}  - \overrightarrow {AA'} .\overrightarrow {AB}  + \overrightarrow {AA'} .\overrightarrow {AC}  + \frac{1}{3}A{A'^2}\)

\( = \frac{1}{2}A{B^2} - \frac{1}{2}A{C^2} + \frac{1}{3}A{A'^2} - \frac{7}{6}\overrightarrow {AB} .\overrightarrow {AA'}  + \frac{5}{6}\overrightarrow {AC} .\overrightarrow {AA'} \)

\( =  = \frac{1}{2}{a^2} - \frac{1}{2}{a^2} + \frac{1}{3}{a^2} - \frac{7}{6}\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AA'} } \right|.\cos \left( {\overrightarrow {AB} ,\overrightarrow {AA'} } \right) + \frac{5}{6}\left| {\overrightarrow {AC} } \right|.\left| {\overrightarrow {AA'} } \right|.\cos \left( {\overrightarrow {AC} ,\overrightarrow {AA'} } \right)\)

\( = \frac{1}{3}{a^2} - \frac{7}{6}{a^2}.\cos \widehat {A'AB} + \frac{5}{6}{a^2}.\cos \widehat {A'AC} = \frac{1}{3}{a^2} - \frac{7}{6}{a^2}.\cos 120^\circ  + \frac{5}{6}{a^2}.\cos 60^\circ \)

\( = \frac{4}{3}{a^2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a) [TH] Phương trình đường tiệm cận xiên của đồ thị hàm số là \(y = x + 1\).
Đúng
Sai
b) [TH] Điểm cực tiểu của đồ thị hàm số là \(T\left( {2;4} \right)\).
Đúng
Sai
c) [TH] Hàm số đồng biến trên \(\left( {1; + \infty } \right)\).
Đúng
Sai
d) [VD] Gọi \[A,\,B\] là hai điểm di động trên đồ thị hàm số sao cho các tiếp tuyến của đồ thị hàm số tại \(A\)\(B\) luôn song song với nhau. Khi khoảng cách từ điểm \(M\left( {4;1} \right)\) đến đường thẳng \(AB\) lớn nhất thì độ dài đoạn thẳng \(AB\) bằng \(2\sqrt 5 \).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP