Cho Một vật đang đứng yên thì bắt đầu chuyển động nhanh dần đều trong khoảng 10 giây với gia tốc là \(a\left( {{\rm{m/}}{{\rm{s}}^{\rm{2}}}} \right),\,a > 0\). Biết rằng quãng đường vật đi được sau 5 giây kể từ khi bắt đầu chuyển động là \(25\,{\rm{m}}\).
Quảng cáo
Trả lời:
a) Đúng.
Ta có: \[v(t) = 2t \Rightarrow v(5) = 10\,\,{\rm{(m/s)}}.\]
b) Đúng.
Ta có: \[v(t) = \int {a.dt} = at + C.\]
\[v(0) = 0 \Rightarrow C = 0 \Rightarrow v(t) = at\].
c) Đúng.
Ta có: \(s(t) = \int {v(t).dt} = \int {at} .dt = \frac{{a{t^2}}}{2} + C.\)
\(s(0) = 0 \Rightarrow C = 0 \Rightarrow s(t) = \frac{{a{t^2}}}{2}.\)
\(s(5) = 25 \Rightarrow \frac{{25a}}{2} = 25 \Rightarrow a = 2\).
d) Sai.
Ta có: \(s(t) = {t^2}\).
Quãng đường vật đi được sau 10 giây kể từ khi bắt đầu chuyển động là: \(s(10) = 100\,\,{\rm{(m)}}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: 196.

Để từ \(M\) kẻ được \(2\) tiếp tuyến \(MA\), \(MB\) đến \(\left( C \right)\), suy ra \(OM > 1\).
Dễ thấy \(\widehat {AMO} = \widehat {BMO} = \frac{{\widehat {AMB}}}{2} \Rightarrow \widehat {AMB} \ge 60^\circ \Leftrightarrow \widehat {AMO} \ge 30^\circ \).
Trong \(\Delta AMO\) vuông tại \(A\):
\(30^\circ \le \widehat {AMO} < 90^\circ \Rightarrow \sin 30^\circ \le \sin AMO < \sin 90^\circ \Leftrightarrow \frac{1}{2} \le \frac{{OA}}{{OM}} < 1 \Rightarrow 1 < OM \le 2\).
Do đó: \(1 < \sqrt {{x^2} + {y^2}} \le 2 \Rightarrow 1 < {x^2} + {y^2} \le 4\). Do \(x,y \in \mathbb{Z}\) nên có hai trường hợp:
· \({x^2} + {y^2} = 2\): Có \(4\) điểm \(\left( {x;y} \right) \in \left\{ {\left( {1;1} \right);\left( { - 1;1} \right);\left( {1; - 1} \right);\left( { - 1; - 1} \right)} \right\}\).
· \({x^2} + {y^2} = 4\): Có \(4\) điểm \(\left( {x;y} \right) \in \left\{ {\left( {2;0} \right);\left( { - 2;0} \right);\left( {0;2} \right);\left( {0; - 2} \right)} \right\}\).
Vậy có \(8\) điểm \(M\) thỏa mãn hay số phần tử của \(T\) là \(8\).
Số cách chọn ngẫu nhiên \(2\) điểm trong \(T\): \(C_8^2 = 28\).
Để đường thẳng đi qua \(2\) điểm được chọn song song với trục \(Ox\) có \(2\) trường hợp thỏa mãn: \(\left( {1;1} \right)\) và \(\left( { - 1;1} \right)\); \(\left( {1; - 1} \right)\) và \(\left( { - 1; - 1} \right)\).
Vậy xác suất cần tìm: \(P = \frac{2}{{28}} = \frac{1}{{14}} \Rightarrow \frac{1}{a} = \frac{1}{{14}} \Rightarrow a = 14 \Rightarrow {a^2} = 196\).
Lời giải

Đáp án: \(1,45\).
Gọi \(I\) là trung điểm \(CD\).
Ta có \(\Delta ACD\) là tam giác đều nên \(AI \bot CD\), \(\Delta BCD\) là tam giác cân tại \(B\) nên \(BI \bot CD\).
Do đó \(CD \bot \left( {ABI} \right)\).
Trong tam giác \(\Delta ABI\) kẻ \(IO\) vuông góc \(AB\).
Khi đó \(d\left( {AB,CD} \right) = IO\).
Xét \(\Delta ACD\) là tam giác đều cạnh \(2\sqrt 3 \) nên \(AI = 3\).
Xét \(\Delta BCI\) vuông tại \(I\) có \(BI = \sqrt {B{C^2} - C{I^2}} = \sqrt {7 - 3} = 2\).
Diện tích tam giác \({S_{\Delta ABI}} = \sqrt {p\left( {p - AB} \right)\left( {p - AI} \right)\left( {p - BI} \right)} = \sqrt {\frac{9}{2}\left( {\frac{9}{2} - 4} \right)\left( {\frac{9}{2} - 3} \right)\left( {\frac{9}{2} - 2} \right)} = \frac{{3\sqrt {15} }}{4}\)
Khi đó \({S_{\Delta ABI}} = \frac{1}{2}OI.AB \Leftrightarrow OI = \frac{{2{S_{\Delta ABI}}}}{{AB}} = \frac{{3\sqrt {15} }}{8}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


