Cho hàm số \(y = \frac{{2{x^2} + 5x}}{{x + 3}}\) có đồ thị \(\left( C \right)\). Các khẳng định sau đúng hay sai?
Quảng cáo
Trả lời:
a) Sai: Tập xác định \(D = \mathbb{R}\backslash \left\{ { - 3} \right\}\).
b) Đúng: Ta có \(y = \frac{{2{x^2} + 5x}}{{x + 3}} = 2x - 1 + \frac{3}{{x + 3}}\).
\(y' = 2 - \frac{3}{{{{\left( {x + 3} \right)}^2}}}\)
\(y' = 0 \Leftrightarrow 2 - \frac{3}{{{{\left( {x + 3} \right)}^2}}} = 0 \Leftrightarrow \frac{{2{x^2} + 12x + 15}}{{{{\left( {x + 3} \right)}^2}}} = 0 \Leftrightarrow 2{x^2} + 12x + 15 = 0\) có hai nghiệm phân biệt.
Vậy hàm số có hai cực trị có tổng hoành độ của cực trị bằng \(\frac{{ - 12}}{2} = - 6\).
c) Sai: \(\mathop {\lim }\limits_{x \to + \infty } \frac{{2{x^2} + 5x}}{{x + 3}} = + \infty ,\,\,\mathop {\lim }\limits_{x \to - \infty } \frac{{2{x^2} + 5x}}{{x + 3}} = - \infty \), nên đồ thị hàm số không có tiệm cận ngang.
d) Sai: Ta có \(\mathop {\lim }\limits_{x \to + \infty } \left[ {y - \left( {2x - 1} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{3}{{x + 3}} = 0;\,\,\,\mathop {\lim }\limits_{x \to - \infty } \left[ {y - \left( {2x - 1} \right)} \right] = \mathop {\lim }\limits_{x \to - \infty } \frac{3}{{x + 3}} = 0\).
Đồ thị hàm số có tiệm cận xiên là \(y = 2x - 1 \Leftrightarrow 2x - y - 1 = 0\,\,\,\left( \Delta \right)\).
Khoảng cách từ điểm \(M\left( {2;1} \right)\) đến \(\Delta \) là \(d\left( {M,\Delta } \right) = \frac{{\left| {2.2 - 1 - 1} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2}} }} = \frac{{2\sqrt 5 }}{5}\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Một đại lý vật liệu cần thuê xe chở 140 tấn xi măng và 9 tấn thép tới công trình xây dựng. Nơi thuê có hai loại xe A và B, trong đó xe A có 10 chiếc và xe B có 9 chiếc. Mỗi xe loại A cho thuê với giá 5 triệu đồng và một xe loại B cho thuê với giá 4,5 triệu đồng. Biết rằng mỗi xe loại A chở tối đa 20 tấn xi măng và 0,6 tấn thép, mỗi xe loại B có thể chở tối đa 10 tấn xi măng và 1,5 tấn thép. Để số tiền thuê xe ít nhất đại lý đã thuê \[x\] chiếc xe loại A và \[y\] chiếc xe loại \(B.\) Tính \[2x + y\]
Một đại lý vật liệu cần thuê xe chở 140 tấn xi măng và 9 tấn thép tới công trình xây dựng. Nơi thuê có hai loại xe A và B, trong đó xe A có 10 chiếc và xe B có 9 chiếc. Mỗi xe loại A cho thuê với giá 5 triệu đồng và một xe loại B cho thuê với giá 4,5 triệu đồng. Biết rằng mỗi xe loại A chở tối đa 20 tấn xi măng và 0,6 tấn thép, mỗi xe loại B có thể chở tối đa 10 tấn xi măng và 1,5 tấn thép. Để số tiền thuê xe ít nhất đại lý đã thuê \[x\] chiếc xe loại A và \[y\] chiếc xe loại \(B.\) Tính \[2x + y\]
Lời giải
Đáp số: 9.
Gọi \(x,y\)lần lượt là số xe loại A và B mà đại lý cần thuê. ĐK \(\left\{ \begin{array}{l}0 \le x \le 10\\0 \le y \le 9\end{array} \right.\)

Từ đề bài ta có: \(\left\{ \begin{array}{l}20{\rm{x}} + 10y \ge 140\\0,6{\rm{x}} + 1,5y \ge 9\end{array} \right.\).
Khi đó, số tiền thuê xe là: \(T = 5x + 4,5y\).
Miền nghiệm \(\left( {x,y} \right)\)là tứ giác \(ABC{\rm{D}}\) với \(A(\frac{5}{2};9),\,\,\,B(5;4),\,\,C(10;2),\,\,D(10;9).\)
Tại đỉnh \(B\)thì \(T = 43\) đạt giá trị nhỏ nhất nên \(x = 5,y = 4 \Rightarrow 2x + y = 14.\)
Lời giải
Lời giải
Đáp án 37
Gọi số tiền anh Huy gửi vào ngân hàng ban đầu là \(A\) (triệu đồng), với lãi suất \(r/\)tháng, và
số tiền anh rút ra hàng tháng là \(m\) (triệu đồng) thì:
- Sau 1 tháng gửi, số tiền anh Huy còn lại là: \({C_1} = A\left( {1 + r} \right) - m\)
- Sau 2 tháng gửi, số tiền anh Huy còn lại là: \({C_2} = \left[ {A\left( {1 + r} \right) - m} \right]\left( {1 + r} \right) - m\)
\( = A{\left( {1 + r} \right)^2} - m\left( {1 + r} \right) - m\)
- Sau 3 tháng gửi, số tiền anh Huy còn lại là: \({C_3} = \left[ {A{{\left( {1 + r} \right)}^2} - m\left( {1 + r} \right) - m} \right]\left( {1 + r} \right) - m\)
\( = A{\left( {1 + r} \right)^3} - m{\left( {1 + r} \right)^2} - m\left( {1 + r} \right) - m\)
…………………………………………………….
- Sau \(n\) tháng gửi, số tiền anh Huy còn lại là:
\({C_n} = A{\left( {1 + r} \right)^n} - m{\left( {1 + r} \right)^{n - 1}} - m{\left( {1 + r} \right)^{n - 2}} - ... - m\left( {1 + r} \right) - m\)
\( = A{\left( {1 + r} \right)^n} - m.\frac{{{{\left( {1 + r} \right)}^n} - 1}}{r}\).
Anh Huy rút hết tiền khi: \({C_n} = 0 \Leftrightarrow A{\left( {1 + r} \right)^n} - m.\frac{{{{\left( {1 + r} \right)}^n} - 1}}{r} = 0\)
\( \Leftrightarrow \left( {m - Ar} \right){\left( {1 + r} \right)^n} = m\)
\( \Leftrightarrow {\left( {1 + r} \right)^n} = \frac{m}{{m - Ar}}\)
\( \Leftrightarrow n = {\log _{\left( {1 + r} \right)}}\frac{m}{{m - Ar}}\)
Thay \(A = 1000\)(triệu), \(m = 30\)(triệu), \(r = 0,5\% = 0,005\)
Ta được \(n \approx 36,6\). Tức là sau 37 tháng anh Huy sẽ rút hết tiền trong ngân hàng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

