Cho hàm số \(y = f\left( x \right) = \frac{{ax + b}}{{cx + 1}}\) với \(a,b,c \in \mathbb{R}\) có đồ thị như hình vẽ dưới:

Quảng cáo
Trả lời:
a) Sai. Đạo hàm của hàm số \(f'\left( x \right) < 0,\,\,\forall x \ne 1\).
Dựa vào hình vẽ, đạo hàm của hàm số \(f'\left( x \right) < 0,\,\,\forall x \ne 1\).
b) Sai. Từ đồ thị ta có hàm số \(y = f\left( x \right)\) nghịch biến trên khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {1; + \infty } \right)\).
c) Đúng. Đồ thị hàm số \(y = f\left( x \right)\) có đường tiệm cận đứng là \(x = 1\) và đường tiệm cận ngang là \(y = - 1\).
d) Sai. Tổng \(a + b + c = - 2\).
Đồ thị hàm số có TCĐ \(x = - \frac{1}{c} = 1 \Rightarrow c = - 1\).
Đồ thị hàm số có TCN \(y = \frac{a}{c} = - 1 \Rightarrow a = 1\).
Đồ thị hàm số cắt trục tung tại điểm \(\left( {0; - 2} \right) \Rightarrow b = - 2\). Vậy \(a + b + c = 1 - 2 - 1 = - 2\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Một đại lý vật liệu cần thuê xe chở 140 tấn xi măng và 9 tấn thép tới công trình xây dựng. Nơi thuê có hai loại xe A và B, trong đó xe A có 10 chiếc và xe B có 9 chiếc. Mỗi xe loại A cho thuê với giá 5 triệu đồng và một xe loại B cho thuê với giá 4,5 triệu đồng. Biết rằng mỗi xe loại A chở tối đa 20 tấn xi măng và 0,6 tấn thép, mỗi xe loại B có thể chở tối đa 10 tấn xi măng và 1,5 tấn thép. Để số tiền thuê xe ít nhất đại lý đã thuê \[x\] chiếc xe loại A và \[y\] chiếc xe loại \(B.\) Tính \[2x + y\]
Một đại lý vật liệu cần thuê xe chở 140 tấn xi măng và 9 tấn thép tới công trình xây dựng. Nơi thuê có hai loại xe A và B, trong đó xe A có 10 chiếc và xe B có 9 chiếc. Mỗi xe loại A cho thuê với giá 5 triệu đồng và một xe loại B cho thuê với giá 4,5 triệu đồng. Biết rằng mỗi xe loại A chở tối đa 20 tấn xi măng và 0,6 tấn thép, mỗi xe loại B có thể chở tối đa 10 tấn xi măng và 1,5 tấn thép. Để số tiền thuê xe ít nhất đại lý đã thuê \[x\] chiếc xe loại A và \[y\] chiếc xe loại \(B.\) Tính \[2x + y\]
Lời giải
Đáp số: 9.
Gọi \(x,y\)lần lượt là số xe loại A và B mà đại lý cần thuê. ĐK \(\left\{ \begin{array}{l}0 \le x \le 10\\0 \le y \le 9\end{array} \right.\)

Từ đề bài ta có: \(\left\{ \begin{array}{l}20{\rm{x}} + 10y \ge 140\\0,6{\rm{x}} + 1,5y \ge 9\end{array} \right.\).
Khi đó, số tiền thuê xe là: \(T = 5x + 4,5y\).
Miền nghiệm \(\left( {x,y} \right)\)là tứ giác \(ABC{\rm{D}}\) với \(A(\frac{5}{2};9),\,\,\,B(5;4),\,\,C(10;2),\,\,D(10;9).\)
Tại đỉnh \(B\)thì \(T = 43\) đạt giá trị nhỏ nhất nên \(x = 5,y = 4 \Rightarrow 2x + y = 14.\)
Lời giải
Lời giải
Đáp án 37
Gọi số tiền anh Huy gửi vào ngân hàng ban đầu là \(A\) (triệu đồng), với lãi suất \(r/\)tháng, và
số tiền anh rút ra hàng tháng là \(m\) (triệu đồng) thì:
- Sau 1 tháng gửi, số tiền anh Huy còn lại là: \({C_1} = A\left( {1 + r} \right) - m\)
- Sau 2 tháng gửi, số tiền anh Huy còn lại là: \({C_2} = \left[ {A\left( {1 + r} \right) - m} \right]\left( {1 + r} \right) - m\)
\( = A{\left( {1 + r} \right)^2} - m\left( {1 + r} \right) - m\)
- Sau 3 tháng gửi, số tiền anh Huy còn lại là: \({C_3} = \left[ {A{{\left( {1 + r} \right)}^2} - m\left( {1 + r} \right) - m} \right]\left( {1 + r} \right) - m\)
\( = A{\left( {1 + r} \right)^3} - m{\left( {1 + r} \right)^2} - m\left( {1 + r} \right) - m\)
…………………………………………………….
- Sau \(n\) tháng gửi, số tiền anh Huy còn lại là:
\({C_n} = A{\left( {1 + r} \right)^n} - m{\left( {1 + r} \right)^{n - 1}} - m{\left( {1 + r} \right)^{n - 2}} - ... - m\left( {1 + r} \right) - m\)
\( = A{\left( {1 + r} \right)^n} - m.\frac{{{{\left( {1 + r} \right)}^n} - 1}}{r}\).
Anh Huy rút hết tiền khi: \({C_n} = 0 \Leftrightarrow A{\left( {1 + r} \right)^n} - m.\frac{{{{\left( {1 + r} \right)}^n} - 1}}{r} = 0\)
\( \Leftrightarrow \left( {m - Ar} \right){\left( {1 + r} \right)^n} = m\)
\( \Leftrightarrow {\left( {1 + r} \right)^n} = \frac{m}{{m - Ar}}\)
\( \Leftrightarrow n = {\log _{\left( {1 + r} \right)}}\frac{m}{{m - Ar}}\)
Thay \(A = 1000\)(triệu), \(m = 30\)(triệu), \(r = 0,5\% = 0,005\)
Ta được \(n \approx 36,6\). Tức là sau 37 tháng anh Huy sẽ rút hết tiền trong ngân hàng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

