Đường vuông góc chung của hai đường thẳng chéo nhau \(a\) và \(b\) là:
A. Đường thẳng vừa vuông góc với \(a\) và vuông góc với \(b\).
B. Đường thẳng vừa vuông góc, vừa cắt hai đường thẳng chéo nhau \(a\) và \(b\).
C. Đường thẳng vuông góc với \(a\) và cắt đường thẳng \(b\).
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Đường thẳng vừa vuông góc, vừa cắt hai đường thẳng chéo nhau \(a\) và \(b\) được gọi là đường vuông góc chung của hai đường thẳng chéo nhau \(a\) và \(b.\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Gọi biến cố \(D\): “Có ít nhất một lần bắn trúng đích ”.
biến cố \(\overline D \): “Cả hai lần bắn đều không trúng đích”.
\( \Rightarrow P\left( {\overline D } \right) = 0,2.0,3 = 0,06.\)
\( \Rightarrow P\left( D \right) = 1 - P\left( {\overline D } \right) = 0,94.\)
Lời giải
Hướng dẫn giải
Ta có \(SA \bot \left( {ABC} \right) \Rightarrow SA \bot BC\)
Mà \(AB \bot BC\) và trong \(\left( {SAB} \right)\): \(SA \cap AB = A\) nên \(BC \bot \left( {SAB} \right)\).
\( \Rightarrow BC \bot SB\).
Vậy tam giác \(SBC\) vuông tại \(B\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.