Câu hỏi:

30/12/2025 54 Lưu

Có bao nhiêu số tự nhiên \(x\) không vượt quá \[2023\] thỏa mãn: \({\log _2}\left( {\frac{x}{4}} \right)\log _2^2x \ge 0\)?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Điều kiện: \(x > 0\).

\({\log _2}\left( {\frac{x}{4}} \right)\log _2^2x \ge 0\)\( \Leftrightarrow \left( {{{\log }_2}x - {{\log }_2}4} \right)\log _2^2x \ge 0\)\( \Leftrightarrow \left[ \begin{array}{l}{\log _2}x = 0\\\left\{ \begin{array}{l}{\log _2}x - {\log _2}4 \ge 0\\{\log _2}x \ne 0\end{array} \right.\end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}x = 1\\\left\{ \begin{array}{l}x \ge 4\\0 < x \ne 1\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\\x \ge 4\end{array} \right.\)  (thỏa mãn điều kiện \(x > 0\)).

Vậy có \(2021\) số tự nhiên \(x\) thỏa mãn bài ra.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Gọi biến cố \(D\): “Có ít nhất một lần bắn trúng đích ”.

    biến cố \(\overline D \): “Cả hai lần bắn đều không trúng đích”.

\( \Rightarrow P\left( {\overline D } \right) = 0,2.0,3 = 0,06.\)

\( \Rightarrow P\left( D \right) = 1 - P\left( {\overline D } \right) = 0,94.\)

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

\({\log _a}\left( {{b^3}{c^4}} \right) = 3{\log _a}b + 4{\log _a}c = 3.3 + 4.\left( { - 4} \right) =  - 7\).

Câu 3

A. \[I = \frac{1}{2}\].
B. \[I = 0\].
C. \[I =  - 2\].
D. \[I = 2\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(y = {\log _2}x\).   
B. \(y = {2^x}\).     
C. \(y = {\left( {\frac{1}{2}} \right)^x}\). 
D. \(y = {\log _{\frac{1}{2}}}x\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[90^\circ .\]  
B. \[45^\circ .\]  
C. \[60^\circ .\]  
D. \[30^\circ .\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP