Câu hỏi:

30/12/2025 21 Lưu

Cho hàm số \(y = \frac{{{x^2} + x}}{{x - 2}}\) đạo hàm của hàm số tại \(x = 1\) là

A. \(y'\left( 1 \right) =  - 4\).               
B. \(y'\left( 1 \right) =  - 5\).     
C. \(y'\left( 1 \right) =  - 3\). 
D. \(y'\left( 1 \right) =  - 2\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

\(y' = {\left( {\frac{{{x^2} + x}}{{x - 2}}} \right)^\prime } = \frac{{\left( {2x + 1} \right)\left( {x - 2} \right) - \left( {{x^2} + x} \right)}}{{{{\left( {x - 2} \right)}^2}}} = \frac{{{x^2} - 4x - 2}}{{{{\left( {x - 2} \right)}^2}}}\).

\(y'\left( 1 \right) = \frac{{{1^2} - 4.1 - 2}}{{{{\left( {1 - 2} \right)}^2}}} =  - 5\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\left( {SAC} \right) \bot \left( {SBD} \right)\). 
B. \(SH \bot \left( {ABCD} \right)\).
C. \(\left( {SBD} \right) \bot \left( {ABCD} \right)\). 
D. \(CD \bot \left( {SAD} \right)\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Cho hình chóp S.ABCD đều. Gọi H là trung điểm cạnh AC. Tìm mệnh đề sai? (ảnh 1)

Vì \(S.ABCD\) là hình chóp đều nên \(SH \bot \left( {ABCD} \right)\).

Vì \(ABCD\)là hình vuông nên \(AC \bot BD\) mà \(SH \bot AC\left( {SH \bot \left( {ABCD} \right)} \right)\) nên \(AC \bot \left( {SBD} \right) \Rightarrow \left( {SBD} \right) \bot \left( {SAC} \right)\) và \(\left( {SBD} \right) \bot \left( {ABCD} \right)\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Có \[P(A).P(B) = \frac{1}{3}.\frac{1}{4} = \frac{1}{{12}} \ne P(AB) = \frac{1}{2}\].

Do đó \(A\) và \(B\) không độc lập.

Câu 3

A. \(P = {x^{\frac{4}{3}}}\).  
B. \(P = {x^9}\).  
C. \(P = {x^{12}}\). 
D. \(P = {x^{\frac{3}{4}}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP