Hai người độc lập nhau ném bóng vào rổ. Mỗi người ném vào rổ của mình một quả bóng. Biết rằng xác suất ném bóng vào rổ của từng người tương ứng là \(\frac{1}{5}\) và \(\frac{2}{7}\). Gọi \(A\) là biến cố: “Cả hai cùng ném bóng vào rổ”. Tính xác suất của biến cố \(A\) .
Quảng cáo
Trả lời:
Hướng dẫn giải
Gọi \[A\] là biến cố: “Cả hai cùng ném bóng vào rổ”
Gọi \[X\] là biến cố: “Người thứ nhất ném vào rổ”\( \Rightarrow P\left( X \right) = \frac{1}{5}.\)
Gọi \[Y\] là biến cố: “Người thứ hai ném vào rổ”\( \Rightarrow P\left( Y \right) = \frac{2}{7}.\)
Ta thấy biến cố \[X,Y\] là \[2\] biến cố độc lập nhau, theo công thức nhân xác suất ta có:
\(P\left( A \right) = P\left( {X.Y} \right) = P\left( X \right).P\left( Y \right) = \frac{1}{5}.\frac{2}{7} = \frac{2}{{35}}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Vì \(S.ABCD\) là hình chóp đều nên \(SH \bot \left( {ABCD} \right)\).
Vì \(ABCD\)là hình vuông nên \(AC \bot BD\) mà \(SH \bot AC\left( {SH \bot \left( {ABCD} \right)} \right)\) nên \(AC \bot \left( {SBD} \right) \Rightarrow \left( {SBD} \right) \bot \left( {SAC} \right)\) và \(\left( {SBD} \right) \bot \left( {ABCD} \right)\).
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Do \(CC' \bot \left( {ABC} \right)\) nên suy ra \(MC\) là hình chiếu của \(MC'\) lên \(\left( {ABC} \right)\). Khi đó: \(\left( {MC',\left( {ABC} \right)} \right) = \left( {MC',MC} \right) = \widehat {C'MC} = \alpha \).
Vì \(\Delta ABC\) đều cạnh \(a\), đường cao \(CM = \frac{{a\sqrt 3 }}{2}\).
Xét tam giác \(MCC'\) vuông tại \(C\) có: \(\tan \alpha = \frac{{CC'}}{{CM}} = \frac{a}{{\frac{{a\sqrt 3 }}{2}}} = \frac{{2\sqrt 3 }}{3}\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.