Câu hỏi:

30/12/2025 2 Lưu

Tập nghiệm của bất phương trình \({\left( {\frac{3}{4}} \right)^{ - {x^2}}} > \frac{{81}}{{256}}\)

A. \(\left( { - \infty ; - 2} \right)\).  
B. \(\mathbb{R}\).     
C. \(\left( { - \infty ; - 2} \right) \cup \left( {2; + \infty } \right)\). 
D. \(\left( { - 2;2} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

\({\left( {\frac{3}{4}} \right)^{ - {x^2}}} > \frac{{81}}{{256}}\)\( \Leftrightarrow {\left( {\frac{3}{4}} \right)^{ - {x^2}}} > {\left( {\frac{3}{4}} \right)^4}\)\( \Leftrightarrow  - {x^2} < 4\)\( \Leftrightarrow {x^2} + 4 > 0\) (luôn đúng).

Vậy tập nghiệm của bất phương trình là \(\mathbb{R}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[\left( {AA'B'B} \right)\]. 
B. \[\left( {A'B'CD} \right)\].     
C. \[\left( {ADC'B'} \right)\]. 
D. \[\left( {BCD'A'} \right)\]. 

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Vì \(ABCD.A'B'C'D'\)là hình hộp chữ nhật nên \[\left( {AA'B'B} \right) \bot (ABCD)\].

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Gọi biến cố A: “Học sinh tỉnh X được chọn đỗ tốt nghiệp THPT”.

Biến cố B: “Học sinh tỉnh Y được chọn đỗ tốt nghiệp THPT”.

Biến cố C: “Đúng 1 học sinh được chọn đỗ tốt nghiệp THPT”.

Khi đó ta có \(C = \overline A B \cup A\overline B \).

Theo đề, ta có \(P\left( A \right) = 0,95 \Rightarrow P\left( {\overline A } \right) = 0,05;P\left( B \right) = 0,97 \Rightarrow P\left( {\overline B } \right) = 0,03\).

\(P\left( C \right) = P\left( {\overline A B} \right) + P\left( {A\overline B } \right) = P\left( {\overline A } \right).P\left( B \right) + P\left( A \right).P\left( {\overline B } \right) = 0,05.0,97 + 0,95.0,03 = 0,077.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A.\[{\left( {\sqrt x } \right)^\prime } = \frac{1}{{2\sqrt x }}\]. 
B. \[y = \sqrt x \]. 
C. \[{\left( {\sqrt x } \right)^\prime } = \frac{1}{{\sqrt x }}\].
D. \[{\left( {\sqrt x } \right)^\prime } = \frac{2}{{\sqrt x }}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP