Câu hỏi:

30/12/2025 6 Lưu

Hai người cùng bắn vào 1 bia. Người thứ nhất có xác suất bắn trúng là 60%, xác suất bắn trúng của người thứ 2 là 70%. Xác suất để cả hai người cùng bắn không trúng bằng

A. \[\frac{1}{{12}}\]. 
B. \[\frac{{11}}{{12}}\].  
C. \[\frac{1}{2}\].  
D. \[\frac{3}{{25}}\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

Gọi A là biến cố: “Người thứ nhất bắn trúng vào bia”.

B là biến cố : “Người thứ hai bắn trúng vào bia”.

Khi đó \(P\left( A \right) = 0,6;P\left( B \right) = 0,7\).

Gọi C là biến cố: “Cả hai người không bắn trúng mục tiêu”.

Khi đó \(C = \overline A \overline B \).

Vì \(\overline A ,\overline B \) là hai biến cố độc lập nên

\(P\left( C \right) = P\left( {\overline A } \right)P\left( {\overline B } \right) = \left( {1 - P\left( A \right)} \right)\left( {1 - P\left( B \right)} \right) = 0,4.0,3 = \frac{3}{{25}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[\left( {AA'B'B} \right)\]. 
B. \[\left( {A'B'CD} \right)\].     
C. \[\left( {ADC'B'} \right)\]. 
D. \[\left( {BCD'A'} \right)\]. 

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Vì \(ABCD.A'B'C'D'\)là hình hộp chữ nhật nên \[\left( {AA'B'B} \right) \bot (ABCD)\].

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Gọi biến cố A: “Học sinh tỉnh X được chọn đỗ tốt nghiệp THPT”.

Biến cố B: “Học sinh tỉnh Y được chọn đỗ tốt nghiệp THPT”.

Biến cố C: “Đúng 1 học sinh được chọn đỗ tốt nghiệp THPT”.

Khi đó ta có \(C = \overline A B \cup A\overline B \).

Theo đề, ta có \(P\left( A \right) = 0,95 \Rightarrow P\left( {\overline A } \right) = 0,05;P\left( B \right) = 0,97 \Rightarrow P\left( {\overline B } \right) = 0,03\).

\(P\left( C \right) = P\left( {\overline A B} \right) + P\left( {A\overline B } \right) = P\left( {\overline A } \right).P\left( B \right) + P\left( A \right).P\left( {\overline B } \right) = 0,05.0,97 + 0,95.0,03 = 0,077.\)

Câu 3

A.\[{\left( {\sqrt x } \right)^\prime } = \frac{1}{{2\sqrt x }}\]. 
B. \[y = \sqrt x \]. 
C. \[{\left( {\sqrt x } \right)^\prime } = \frac{1}{{\sqrt x }}\].
D. \[{\left( {\sqrt x } \right)^\prime } = \frac{2}{{\sqrt x }}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP