Câu hỏi:

30/12/2025 2 Lưu

Cho hình chóp \(S.ABCD\)có đáy \(ABCD\) là hình vuông, cạnh bên \(SA\) vuông góc với mặt phẳng đáy. Góc phẳng nhị diện \(\left[ {S,BC,A} \right]\) là

A. \(\widehat {SBA}\). 
B. \[\widehat {SCA}\]. 
C.\(\widehat {ASC}\). 
D. \(\widehat {ASB}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Cho hình chóp S.ABCD có đáy ABCD là hình vuông, cạnh bên SA vuông góc với mặt phẳng đáy. Góc phẳng nhị diện [S,BC,A] là (ảnh 1)

Vì \(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot BC\) mà \(BC \bot AB \Rightarrow BC \bot \left( {SAB} \right) \Rightarrow BC \bot SB\).

Khi đó: \(\left\{ \begin{array}{l}\left( {SBC} \right) \cap \left( {ABC} \right) = BC\\SB \bot BC\\AB \bot BC\end{array} \right. \Rightarrow \left[ {S,BC,A} \right] = \widehat {SBA}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[\left( {AA'B'B} \right)\]. 
B. \[\left( {A'B'CD} \right)\].     
C. \[\left( {ADC'B'} \right)\]. 
D. \[\left( {BCD'A'} \right)\]. 

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Vì \(ABCD.A'B'C'D'\)là hình hộp chữ nhật nên \[\left( {AA'B'B} \right) \bot (ABCD)\].

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Gọi A là biến cố: “Người thứ nhất bắn trúng vào bia”.

B là biến cố : “Người thứ hai bắn trúng vào bia”.

Khi đó \(P\left( A \right) = 0,6;P\left( B \right) = 0,7\).

Gọi C là biến cố: “Cả hai người không bắn trúng mục tiêu”.

Khi đó \(C = \overline A \overline B \).

Vì \(\overline A ,\overline B \) là hai biến cố độc lập nên

\(P\left( C \right) = P\left( {\overline A } \right)P\left( {\overline B } \right) = \left( {1 - P\left( A \right)} \right)\left( {1 - P\left( B \right)} \right) = 0,4.0,3 = \frac{3}{{25}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP