Câu hỏi:

30/12/2025 4 Lưu

Hai chuyến bay của hai hãng hàng không X và Y, hoạt động độc lập với nhau. Xác suất để chuyến bay của hãng X và hãng Y khởi hành đúng giờ tương ứng là \(0,92\) và \(0,98\). Tính xác suất để chỉ có duy nhất một trong hai chuyển bay khởi hành đúng giờ.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải.

Gọi A là biến cố: “Chuyến bay của hãng X khởi hành đúng giờ” và B là biến cố: “Chuyến bay của hãng Y khởi hành đúng giờ”.

Từ giả thiết ta có A và B là hai biến cố độc lập.

P(AB) = 0,92 .0,98 = 0,9016.

Gọi M là biến cố : “Chỉ có một chuyến bay khởi hành đúng giờ”.

\(M = A\overline B  \cup \overline A B\), do đó

\(P(M) = P(A\overline B ) + P(\overline A B)\).

Ta có: \(P(A\overline B ) = 0,92.0,02 = 0,0184\), \(P(\overline A B) = 0,08.0,98 = 0,0784\).

Do đó \(P\left( M \right) = 0,0184 + 0,0784 = 0,0968\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[\left( {AA'B'B} \right)\]. 
B. \[\left( {A'B'CD} \right)\].     
C. \[\left( {ADC'B'} \right)\]. 
D. \[\left( {BCD'A'} \right)\]. 

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Vì \(ABCD.A'B'C'D'\)là hình hộp chữ nhật nên \[\left( {AA'B'B} \right) \bot (ABCD)\].

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Gọi A là biến cố: “Người thứ nhất bắn trúng vào bia”.

B là biến cố : “Người thứ hai bắn trúng vào bia”.

Khi đó \(P\left( A \right) = 0,6;P\left( B \right) = 0,7\).

Gọi C là biến cố: “Cả hai người không bắn trúng mục tiêu”.

Khi đó \(C = \overline A \overline B \).

Vì \(\overline A ,\overline B \) là hai biến cố độc lập nên

\(P\left( C \right) = P\left( {\overline A } \right)P\left( {\overline B } \right) = \left( {1 - P\left( A \right)} \right)\left( {1 - P\left( B \right)} \right) = 0,4.0,3 = \frac{3}{{25}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP