Trong mặt phẳng tọa độ \(Oxy\), cho đường tròn \(\left( C \right):{x^2} + {y^2} - 2x + 4y = 0\) và đường thẳng \(d:x + 2y - 1 = 0\).
a) Đường tròn \(\left( C \right)\) có tâm \(I\left( {1; - 2} \right)\).
b) Đường thẳng \(d'\) là tiếp tuyến của đường tròn \(\left( C \right)\) tại điểm \(M\left( {2;b} \right),b < 0\). Khi đó đường thẳng \(d'\)song song với đường thẳng \(d\).
c) Đường thẳng \(d\) là tiếp tuyến của đường tròn \(\left( C \right)\).
Câu hỏi trong đề: Đề kiểm tra Toán 10 Kết nối tri thức Chương 7 có đáp án !!
Quảng cáo
Trả lời:
Lời giải
a) \(\left( C \right):{x^2} + {y^2} - 2x + 4y = 0\)\( \Leftrightarrow {\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 5\).
Đường tròn \(\left( C \right)\) có tâm \(I\left( {1; - 2} \right),R = \sqrt 5 \).
b) Thay tọa độ điểm \(M\left( {2;b} \right)\)vào phương trình đường tròn ta được
\({2^2} + {b^2} - 2 \cdot 2 + 4b = 0\)\( \Leftrightarrow b = 0\) hoặc \(b = - 4\).
Vì \(b < 0\) nên \(M\left( {2; - 4} \right)\).
Có \(\overrightarrow {IM} = \left( {1; - 2} \right)\).
Tiếp tuyến của đường tròn tại điểm \(M\) nhận \(\overrightarrow {IM} = \left( {1; - 2} \right)\) làm vectơ pháp tuyến có phương trình là
\(\left( {x - 2} \right) - 2\left( {y + 4} \right) = 0\)\( \Leftrightarrow x - 2y - 10 = 0\;\left( {d'} \right)\).
Đường thẳng \(d\) có vectơ pháp tuyến là \(\overrightarrow n = \left( {1;2} \right)\).
Vì \(\overrightarrow n \) và \(\overrightarrow {IM} \) không cùng phương nên hai đường thẳng \(d\) và \(d'\) cắt nhau.
c) Ta có \(d\left( {I,d} \right) = \frac{{\left| {1 + 2 \cdot \left( { - 2} \right) - 1} \right|}}{{\sqrt {{1^2} + {2^2}} }} = \frac{4}{{\sqrt 5 }} < R\).
Nên \(d\) cắt đường tròn \(\left( C \right)\).
d) Thay tọa độ điểm \(O\) vào phương trình đường tròn \(\left( C \right)\) thỏa mãn nên điểm \(O\) nằm trên đường tròn \(\left( C \right)\)
Đáp án: a) Đúng; b) Sai; c) Sai; d) Đúng.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Để đặt vị trí sao cho nhận được tín hiệu sớm nhất khi \(M\) gần vị trí \(A\) nhất.
Mà \(M \in d\) suy ra \(M\) là hình chiếu của \(A\) trên đường thẳng \(d\).
Gọi \(\Delta \) là đường thẳng đi qua \(A\) và vuông góc với \(d\).
Vì \(\Delta \bot d\) nên \(\Delta :x + y + c = 0\).
Mà \(A\left( {4;4} \right) \in \Delta \) nên \(4 + 4 + c = 0 \Leftrightarrow c = - 8\).
Suy ra \(\Delta :x + y - 8 = 0\).
Tọa độ điểm \(M\) là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}x - y - 3 = 0\\x + y - 8 = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = \frac{{11}}{2}\\y = \frac{5}{2}\end{array} \right.\).
Vậy máy thu đặt ở vị trí \(M\left( {\frac{{11}}{2};\frac{5}{2}} \right)\) sẽ nhận được tín hiệu sớm nhất.
Khi đó \(S = a + b = \frac{{11}}{2} + \frac{5}{2} = 8\).
Trả lời: 8.
Lời giải
Lời giải
Đường tròn \(\left( C \right)\) có tâm \(I\left( {a;b} \right)\) và \(R = 5\).
Ta có \(\overrightarrow {IA} = \left( {1 - a; - 1 - b} \right)\).
Đường thẳng \(d\) có một vectơ pháp tuyến là \(\overrightarrow n = \left( {3;4} \right)\).
Vì đường tròn \(\left( C \right):{\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = 25\) tiếp xúc với đường thẳng \(d:3x + 4y + 1 = 0\) tại \(A\left( {1; - 1} \right)\) nên ta có hệ \(\left\{ \begin{array}{l}1 - a = 3k\\ - 1 - b = 4k\\{\left( {1 - a} \right)^2} + {\left( { - 1 - b} \right)^2} = 25\end{array} \right.\)\[ \Leftrightarrow \left\{ \begin{array}{l}1 - a = 3k\\ - 1 - b = 4k\\9{k^2} + 16{k^2} = 25\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}1 - a = 3k\\ - 1 - b = 4k\\{k^2} = 1\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}1 - a = 3k\\ - 1 - b = 4k\\k = \pm 1\end{array} \right.\].
Với \(k = 1\) thì \(\left\{ \begin{array}{l}a = - 2\\b = - 5\end{array} \right.\); Với \(k = - 1\) thì \(\left\{ \begin{array}{l}a = 4\\b = 3\end{array} \right.\).
Vì \(a < 0\) nên \(\left\{ \begin{array}{l}a = - 2\\b = - 5\end{array} \right.\). Suy ra \(\frac{a}{b} = 0,4\).
Trả lời: 0,4.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.