Câu hỏi:

31/12/2025 130 Lưu

Phần 2. Trắc nghiệm đúng sai

Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Cho hàm số \(y = f\left( x \right) = \left\{ \begin{array}{l}8\;\;\;\;\;\;\;\;\;{\rm{khi}}\;x < 0\\8 - 2x\;\;{\rm{khi}}\;0 \le x \le 2\\{x^2}\;\;\;\;\;\;\;{\rm{khi}}\;x > 2\end{array} \right.\).

a) \(f\left( {\frac{3}{2}} \right) = f\left( {\sqrt 5 } \right)\).

Đúng
Sai

b) Điểm \(A\left( {0;0} \right)\) thuộc đồ thị hàm số.

Đúng
Sai

c) Hàm số đồng biến trên khoảng \(\left( {0;2} \right)\).

Đúng
Sai
d) Tập giá trị của hàm số là \(\left[ {4; + \infty } \right)\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

a) \(f\left( {\frac{3}{2}} \right) = 8 - 2 \cdot \frac{3}{2} = 5\); \(f\left( {\sqrt 5 } \right) = {\left( {\sqrt 5 } \right)^2} = 5\).

Suy ra \(f\left( {\frac{3}{2}} \right) = f\left( {\sqrt 5 } \right) = 5\).

b) Có \(f\left( 0 \right) = 8 - 2 \cdot 0 = 8\).

Đồ thị hàm số đi qua điểm \(B\left( {0;8} \right)\) và không đi qua điểm \(A\left( {0;0} \right)\).

c) Trên khoảng \(\left( {0;2} \right)\) hàm số \(y = f\left( x \right) = 8 - 2x\) là hàm số bậc nhất với hệ số \(a =  - 2 < 0\) nên hàm số \(y = f\left( x \right)\) nghịch biến trên khoảng \(\left( {0;2} \right)\).

d) Khi \(x < 0 \Rightarrow y = 8\).

Khi \(0 \le x \le 2 \Rightarrow y = 8 - 2x \in \left[ {4;8} \right]\).

Khi \(x > 2 \Rightarrow y = {x^2} > 4\).

Vậy tập giá trị của hàm số là \(\left[ {4; + \infty } \right)\).

Đáp án: a) Đúng;    b) Sai;     c) Sai;   d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. Hàm số đồng biến trên khoảng \(\left( { - 3;1} \right)\) và \(\left( {1;4} \right)\).        

B. Đồ thị cắt trục hoành tại 3 điểm phân biệt.           

C. Hàm số đồng biến trên khoảng \(\left( { - 3; - 1} \right)\) và \(\left( {1;3} \right)\).

D. Hàm số nghịch biến trên khoảng \(\left( { - 2;1} \right)\).

Lời giải

Lời giải

Hàm số đồng biến trên khoảng \(\left( { - 3; - 1} \right)\) và \(\left( {1;3} \right)\). Chọn C.

Lời giải

Lời giải

Vì \(\left( P \right)\) có hoành độ đỉnh bằng \( - 3\) và đi qua điểm \(M\left( { - 2;1} \right)\) nên ta có hệ phương trình

\(\left\{ \begin{array}{l} - \frac{{ - 4}}{{2a}} =  - 3\\4a + 8 + c = 1\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l} - 4 = 6a\\4a + c =  - 7\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a =  - \frac{2}{3}\\c =  - \frac{{13}}{3}\end{array} \right.\)\( \Rightarrow S = 2a - c = 3\). Chọn A.

Câu 4

A. \(S = \left( { - \infty ; - 2} \right) \cup \left( {3; + \infty } \right)\).  
B. \(S = \left( { - 2;3} \right)\).
. \(S = \left[ { - 2;3} \right]\). 
D. \(S = \left( { - \infty ; - 2} \right] \cup \left[ {3; + \infty } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(I\left( { - 1;6} \right)\).  
B. \(I\left( {1;0} \right)\). 
C. \(I\left( {2; - 10} \right)\).      
D. \(I\left( { - 1;8} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP