Câu hỏi:

16/01/2026 45 Lưu

Trong mặt phẳng tọa độ \(Oxy\), cho hình vuông \(ABCD\) có \(A\left( { - 1;\,\,0} \right)\) và \(B\left( {1;\,\,2} \right)\).

a) Lập phương trình đường thẳng \(BC\).

b) Tìm toạ độ của điểm \(C\) biết rằng hoành độ của điểm \(C\) là số dương.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Trong mặt phẳng tọa độ \(Oxy\), cho hình vuông \(ABCD\) có \(A\left( { - 1;\,\,0} \right)\) và \(B\left( {1;\,\,2} \right)\). (ảnh 1)

a) Do \(ABCD\) là hình vuông nên \(AB\) và \(BC\) vuông góc với nhau tại \(B\).

Do đó, đường thẳng \(BC\) nhận vectơ \(\overrightarrow {AB}  = \left( {2;\,\,2} \right)\) làm vectơ pháp tuyến.

Chọn điểm \(B\left( {1;\,\,2} \right)\) thuộc đường thẳng \(BC\). Phương trình tổng quát của đường thẳng \(BC\) là: \(2\left( {x - 1} \right) + 2\left( {y - 2} \right) = 0\) hay \(x + y - 3 = 0\).

Vậy phương trình tổng quát đường thẳng \(BC\): \(x + y - 3 = 0\).

b) Từ phương trình đường thẳng \(BC\) là \(x + y - 3 = 0\), ta có: \(y = 3 - x\).

Điểm \(C\) thuộc đường thẳng \(BC\) nên tọa độ của nó có dạng: \(\left( {t;\,\,3 - t} \right)\).

\(\overrightarrow {BC}  = \left( {t - 1;\,\,1 - t} \right)\)

\(BC = \sqrt {{{(t - 1)}^2} + {{(1 - t)}^2}} \)

\(AB = \sqrt {{2^2} + {2^2}}  = 2\sqrt 2 \)

Do \(ABCD\) là hình vuông nên ta có: \(BC = AB\)

\( \Leftrightarrow {\left( {t - 1} \right)^2} + {\left( {1 - t} \right)^2} = {\left( {2\sqrt 2 } \right)^2} \Leftrightarrow {t^2} - 2t - 3 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 3\\t =  - 1\end{array} \right.\)

Với \(t = 3\), ta có: \(C\left( {3;\,\,0} \right)\)

Với \(t =  - 1\), ta có: \(C\left( { - 1;\,4} \right)\)

Mà hoành độ của điểm \(C\) là số dương nên \(C\left( {3;\,\,0} \right)\) thỏa mãn yêu cầu đề bài.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. 252;                       
B. 352;                          
C. 452;                       
D. 425.

Lời giải

Đáp án đúng là: B

Áp dụng công thức khai triển của \({\left( {a + b} \right)^5}\) lần lượt cho \(a = \sqrt 5 \) và \(b = 1\), rồi cho \(a = \sqrt 5 \) và \(b =  - 1\), ta có

\({\left( {\sqrt 5  + 1} \right)^5} - {\left( {\sqrt 5  - 1} \right)^5}\)

\( = \left( {{{\left( {\sqrt 5 } \right)}^5} + 5{{\left( {\sqrt 5 } \right)}^4} + 10{{\left( {\sqrt 5 } \right)}^3} + 10{{\left( {\sqrt 5 } \right)}^2} + 5\sqrt 5  + 1} \right)\)

\( - \left( {{{\left( {\sqrt 5 } \right)}^5} - 5{{\left( {\sqrt 5 } \right)}^4} + 10{{\left( {\sqrt 5 } \right)}^3} - 10{{\left( {\sqrt 5 } \right)}^2} + 5\sqrt 5  - 1} \right)\)

\( = 10.{\left( {\sqrt 5 } \right)^4} + 20.{\left( {\sqrt 5 } \right)^2} + 2\)

\( = 10\,\,.\,25 + 20\,\,.\,\,5 + 2 = 352\)

Lời giải

Số cách chọn 4 học sinh bất kì từ 12 học sinh là \(C_{12}^4 = 495\) cách.

Số cách chọn 4 học sinh mà mỗi lớp có ít nhất một em được tính như sau:

\( * \) TH1: Lớp \(A\) có 2 học sinh, các lớp \(B,C\) mỗi lớp có 1 học sinh:

Chọn 2 học sinh trong 5 học sinh lớp \(A\) có \(C_5^2\) cách.

Chọn 1 học sinh trong 4 học sinh lớp \(B\) có \(C_4^1\) cách.

Chọn 1 học sinh trong 3 học sinh lớp \(C\) có \(C_3^1\) cách.

Suy ra số cách chọn là \(C_5^2.C_4^1.C_3^1 = 120\) cách.

\( * \) TH2: Lớp \(B\) có 2 học sinh, các lớp \(A,C\) mỗi lớp có 1 học sinh:

Tương tự ta có số cách chọn là \(C_5^1.C_4^2.C_3^1 = 90\) cách.

\( * \) TH3: Lớp \(C\) có 2 học sinh, các lớp \(A,B\) mỗi lớp có 1 học sinh:

Tương tự ta có số cách chọn là \(C_5^1.C_4^1.C_3^2 = 60\) cách.

Vậy số cách chọn 4 học sinh mà mỗi lớp có ít nhất một học sinh là \(120 + 90 + 60 = 270\) cách.

Số cách chọn ra 4 học sinh thuộc không quá 2 trong 3 lớp trên là \(495 - 270 = 225\) cách.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\left( {\frac{3}{2};\,\,\frac{3}{2}} \right)\);                                  
B. \(\left( {1;\,\,1} \right)\);                     
C. \(\left( {2;\,\,2} \right)\);                              
D. \(\left( { - \frac{3}{2};\,\, - \frac{3}{2}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\left( { - 3;2} \right)\);                               
B. \(\left( { - 3; - 2} \right)\);          
C. \(\left( {3;2} \right)\);            
D. \(\left( {3; - 2} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[\left( {6;\,\, - 10} \right)\];                         
B. \(\left( {3;\,\, - 5} \right)\);         
C. \(\left( { - \frac{1}{2};\,\,3} \right)\);                             
D. \(\left( {3;\,\frac{1}{2}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP