Trong mặt phẳng \(Oxy\), cho \({d_1}:2x - y + 5 = 0;{d_2}:x + y - 3 = 0\) cắt nhau tại \(I\) và ba điểm \(M\left( { - 2;0} \right),E\left( { - 3;4} \right),F\left( {1;3} \right)\).
a) Đường thẳng \({d_1}\) nhận \(\overrightarrow u = \left( {2; - 1} \right)\) làm vectơ chỉ phương.
b) Đường thẳng đi qua \(M\) và vuông góc với \({d_1}\) có phương trình \(x - 2y + 2 = 0\).
c) Đường thẳng \(EF\) cắt \({d_2}\) tại \(K\). Khi đó \(\frac{{KE}}{{KF}} = 2\).
Quảng cáo
Trả lời:
Lời giải
a) Đường thẳng \({d_1}\) nhận \(\overrightarrow n = \left( {2; - 1} \right)\) làm vectơ pháp tuyến.
b) Có \(\overrightarrow {{u_1}} = \left( {1;2} \right)\) vuông góc với \(\overrightarrow n = \left( {2; - 1} \right)\) nên \(\overrightarrow {{u_1}} = \left( {1;2} \right)\) là một vectơ chỉ phương của \({d_1}\).
Đường thẳng đi qua \(M\) và vuông góc với \({d_1}\) nhận \(\overrightarrow {{u_1}} = \left( {1;2} \right)\) làm vectơ pháp tuyến có phương trình là
\(\left( {x + 2} \right) + 2y = 0 \Leftrightarrow x + 2y + 2 = 0\).
c) Có \(\overrightarrow {EF} = \left( {4; - 1} \right)\).
Có \(\overrightarrow {{n_{EF}}} = \left( {1;4} \right)\) vuông góc với \(\overrightarrow {EF} = \left( {4; - 1} \right)\) nên \(\overrightarrow {{n_{EF}}} = \left( {1;4} \right)\) là một vectơ pháp tuyến của \(EF\).
Phương trình đường thẳng \(EF\) là \(\left( {x + 3} \right) + 4\left( {y - 4} \right) = 0\)\( \Leftrightarrow x + 4y - 13 = 0\).
Tọa độ điểm \(K\) là nghiệm của hệ \(\left\{ \begin{array}{l}x + 4y - 13 = 0\\x + y - 3 = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = - \frac{1}{3}\\y = \frac{{10}}{3}\end{array} \right.\)\( \Rightarrow K\left( { - \frac{1}{3};\frac{{10}}{3}} \right)\).
Ta có \(KE = \sqrt {{{\left( { - 3 + \frac{1}{3}} \right)}^2} + {{\left( {4 - \frac{{10}}{3}} \right)}^2}} = \frac{{2\sqrt {17} }}{3}\); \(KF = \sqrt {{{\left( {1 + \frac{1}{3}} \right)}^2} + {{\left( {3 - \frac{{10}}{3}} \right)}^2}} = \frac{{\sqrt {17} }}{3}\).
Vậy \(\frac{{KE}}{{KF}} = 2\).
d) Gọi \(\overrightarrow n = \left( {a;b} \right)\) là vectơ pháp tuyến của đường thẳng \(\Delta \).
Đường thẳng \(\Delta \) đi qua \(M\) và có \(\overrightarrow n = \left( {a;b} \right)\) là vectơ pháp tuyến có phương trình là
\(a\left( {x + 2} \right) + by = 0 \Leftrightarrow ax + by + 2a = 0\).
Vì đường thẳng qua \(M\) cắt \({d_1},{d_2}\) lần lượt tại \(A\) và \(B\) sao cho tam giác \(IAB\) cân tại \(A\) nên góc giữa đường thẳng \(\Delta \) và \({d_2}\) bằng góc giữa đường thẳng \({d_1}\) và \({d_2}\).
Đường thẳng \({d_1},{d_2}\) có vectơ pháp tuyến lần lượt là \(\overrightarrow {{n_1}} = \left( {2; - 1} \right);\overrightarrow {{n_2}} = \left( {1;1} \right)\).
Ta có \(\cos \left( {\Delta ,{d_2}} \right) = \cos \left( {{d_1},{d_2}} \right)\)\( \Leftrightarrow \frac{{\left| {a + b} \right|}}{{\sqrt {{a^2} + {b^2}} \cdot \sqrt {{1^2} + {1^2}} }} = \frac{{\left| {2 \cdot 1 + \left( { - 1} \right) \cdot 1} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2}} \cdot \sqrt {{1^2} + {1^2}} }}\)
\( \Leftrightarrow \frac{{\left| {a + b} \right|}}{{\sqrt {{a^2} + {b^2}} }} = \frac{1}{{\sqrt 5 }}\)\( \Leftrightarrow \sqrt 5 \left| {a + b} \right| = \sqrt {{a^2} + {b^2}} \)\( \Leftrightarrow 2{a^2} + 5ab + 2{b^2} = 0\)\( \Leftrightarrow \left[ \begin{array}{l}a = - \frac{1}{2}b\\a = - 2b\end{array} \right.\).
TH1: \(a = - \frac{1}{2}b\). Chọn \(b = - 2 \Rightarrow a = 1\). Khi đó \(\Delta :x - 2y + 2 = 0\) (chọn).
TH2: \(a = - 2b\). Chọn \(b = - 1 \Rightarrow a = 2\). Khi đó \(\Delta :2x - y + 4 = 0\) (loại).
Vậy \({a^2} - 5{b^2} = - 19\).
Đáp án: a) Sai; b) Sai; c) Đúng; d) Đúng.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Gắn hình parabol vào hệ trục như đề bài, dựa vào giả thiết bài toán ta có tọa độ điểm \(A\left( {30;20} \right)\).
Parabol đi qua điểm \(A\) nên ta có phương trình \({20^2} = 2p \cdot 30 \Leftrightarrow p = \frac{{20}}{3}\).
Vậy ta có phương trình chính tắc của parabol là \({y^2} = \frac{{40x}}{3}\).
Lời giải
Lời giải
Theo đề ta có \({F_1}{F_2} = 2c = 50 \Rightarrow c = 25\) và \(M{F_1} + M{F_2} = 2a = 100 \Rightarrow a = 50\).
Lại có \({b^2} = {a^2} - {c^2} = {50^2} - {25^2} = 1875\).
Vậy elip có phương trình \(\frac{{{x^2}}}{{2500}} + \frac{{{y^2}}}{{1875}} = 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

