Câu hỏi:

31/12/2025 3 Lưu

Trong mặt phẳng \(Oxy\), cho \({d_1}:2x - y + 5 = 0;{d_2}:x + y - 3 = 0\) cắt nhau tại \(I\) và ba điểm \(M\left( { - 2;0} \right),E\left( { - 3;4} \right),F\left( {1;3} \right)\).

a) Đường thẳng \({d_1}\) nhận \(\overrightarrow u  = \left( {2; - 1} \right)\) làm vectơ chỉ phương.

Đúng
Sai

b) Đường thẳng đi qua \(M\) và vuông góc với \({d_1}\) có phương trình \(x - 2y + 2 = 0\).

Đúng
Sai

c) Đường thẳng \(EF\) cắt \({d_2}\) tại \(K\). Khi đó \(\frac{{KE}}{{KF}} = 2\).

Đúng
Sai
d) Đường thẳng \(\Delta :ax + by + 2 = 0\) qua \(M\) cắt \({d_1},{d_2}\) lần lượt tại \(A\) và \(B\) sao cho tam giác \(IAB\) cân tại \(A\). Khi đó \({a^2} - 5{b^2} =  - 19\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

a) Đường thẳng \({d_1}\) nhận \(\overrightarrow n  = \left( {2; - 1} \right)\) làm vectơ pháp tuyến.

b) Có \(\overrightarrow {{u_1}}  = \left( {1;2} \right)\) vuông góc với \(\overrightarrow n  = \left( {2; - 1} \right)\) nên \(\overrightarrow {{u_1}}  = \left( {1;2} \right)\) là một vectơ chỉ phương của \({d_1}\).

Đường thẳng đi qua \(M\) và vuông góc với \({d_1}\) nhận \(\overrightarrow {{u_1}}  = \left( {1;2} \right)\) làm vectơ pháp tuyến có phương trình là

\(\left( {x + 2} \right) + 2y = 0 \Leftrightarrow x + 2y + 2 = 0\).

c) Có \(\overrightarrow {EF}  = \left( {4; - 1} \right)\).

Có \(\overrightarrow {{n_{EF}}}  = \left( {1;4} \right)\) vuông góc với \(\overrightarrow {EF}  = \left( {4; - 1} \right)\) nên \(\overrightarrow {{n_{EF}}}  = \left( {1;4} \right)\) là một vectơ pháp tuyến của \(EF\).

Phương trình đường thẳng \(EF\) là \(\left( {x + 3} \right) + 4\left( {y - 4} \right) = 0\)\( \Leftrightarrow x + 4y - 13 = 0\).

Tọa độ điểm \(K\) là nghiệm của hệ \(\left\{ \begin{array}{l}x + 4y - 13 = 0\\x + y - 3 = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x =  - \frac{1}{3}\\y = \frac{{10}}{3}\end{array} \right.\)\( \Rightarrow K\left( { - \frac{1}{3};\frac{{10}}{3}} \right)\).

Ta có \(KE = \sqrt {{{\left( { - 3 + \frac{1}{3}} \right)}^2} + {{\left( {4 - \frac{{10}}{3}} \right)}^2}}  = \frac{{2\sqrt {17} }}{3}\); \(KF = \sqrt {{{\left( {1 + \frac{1}{3}} \right)}^2} + {{\left( {3 - \frac{{10}}{3}} \right)}^2}}  = \frac{{\sqrt {17} }}{3}\).

Vậy \(\frac{{KE}}{{KF}} = 2\).

d) Gọi \(\overrightarrow n  = \left( {a;b} \right)\) là vectơ pháp tuyến của đường thẳng \(\Delta \).

Đường thẳng \(\Delta \) đi qua \(M\) và có \(\overrightarrow n  = \left( {a;b} \right)\) là vectơ pháp tuyến có phương trình là

\(a\left( {x + 2} \right) + by = 0 \Leftrightarrow ax + by + 2a = 0\).

Vì đường thẳng qua \(M\) cắt \({d_1},{d_2}\) lần lượt tại \(A\) và \(B\) sao cho tam giác \(IAB\) cân tại \(A\) nên góc giữa đường thẳng \(\Delta \) và \({d_2}\) bằng góc giữa đường thẳng \({d_1}\) và \({d_2}\).

Đường thẳng \({d_1},{d_2}\) có vectơ pháp tuyến lần lượt là \(\overrightarrow {{n_1}}  = \left( {2; - 1} \right);\overrightarrow {{n_2}}  = \left( {1;1} \right)\).

Ta có \(\cos \left( {\Delta ,{d_2}} \right) = \cos \left( {{d_1},{d_2}} \right)\)\( \Leftrightarrow \frac{{\left| {a + b} \right|}}{{\sqrt {{a^2} + {b^2}}  \cdot \sqrt {{1^2} + {1^2}} }} = \frac{{\left| {2 \cdot 1 + \left( { - 1} \right) \cdot 1} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2}}  \cdot \sqrt {{1^2} + {1^2}} }}\)

\( \Leftrightarrow \frac{{\left| {a + b} \right|}}{{\sqrt {{a^2} + {b^2}} }} = \frac{1}{{\sqrt 5 }}\)\( \Leftrightarrow \sqrt 5 \left| {a + b} \right| = \sqrt {{a^2} + {b^2}} \)\( \Leftrightarrow 2{a^2} + 5ab + 2{b^2} = 0\)\( \Leftrightarrow \left[ \begin{array}{l}a =  - \frac{1}{2}b\\a =  - 2b\end{array} \right.\).

TH1: \(a =  - \frac{1}{2}b\). Chọn \(b =  - 2 \Rightarrow a = 1\). Khi đó \(\Delta :x - 2y + 2 = 0\) (chọn).

TH2: \(a =  - 2b\). Chọn \(b =  - 1 \Rightarrow a = 2\). Khi đó \(\Delta :2x - y + 4 = 0\) (loại).

Vậy \({a^2} - 5{b^2} =  - 19\).

Đáp án: a) Sai;    b) Sai;   c) Đúng;    d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Một chiếc đèn có mặt cắt ngang là hình parabol. Hình parabol có chiều rộng giữa hai mép vành là AB = 40cm và chiều sâu h = 30cm h bằng khoảng cách từ O đến (AB). Bóng đèn nằm ở tiêu điểm S. Viết phương trình chính tắc của parabol đó. (ảnh 2)

Gắn hình parabol vào hệ trục như đề bài, dựa vào giả thiết bài toán ta có tọa độ điểm \(A\left( {30;20} \right)\).

Parabol đi qua điểm \(A\) nên ta có phương trình \({20^2} = 2p \cdot 30 \Leftrightarrow p = \frac{{20}}{3}\).

Vậy ta có phương trình chính tắc của parabol là \({y^2} = \frac{{40x}}{3}\).

Lời giải

Lời giải

Theo đề ta có \({F_1}{F_2} = 2c = 50 \Rightarrow c = 25\) và \(M{F_1} + M{F_2} = 2a = 100 \Rightarrow a = 50\).

Lại có \({b^2} = {a^2} - {c^2} = {50^2} - {25^2} = 1875\).

Vậy elip có phương trình \(\frac{{{x^2}}}{{2500}} + \frac{{{y^2}}}{{1875}} = 1\).

Câu 6

A. \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\left( {a > b > 0} \right)\). 
B. \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} =  - 1\left( {a > b > 0} \right)\).  
C. \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\left( {a > b > 0} \right)\).    
D. \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} =  - 1\left( {a > b > 0} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\frac{{{x^2}}}{{25}} - \frac{{{y^2}}}{{16}} = 1\).
B. \(\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{{25}} =  - 1\). 
C. \(\frac{{{x^2}}}{{20}} + \frac{{{y^2}}}{{16}} = 1\).   
D. \(\frac{{{x^2}}}{{25}} - \frac{{{y^2}}}{9} = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP