Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

8

Lời giải

Với \(n \ge 2,n \in \mathbb{N}\), ta có \(C_n^2 - n = 20\)\( \Leftrightarrow \frac{{n\left( {n - 1} \right)}}{2} - n = 20\)\( \Leftrightarrow {n^2} - 3n - 40 = 0\)\( \Leftrightarrow \left[ \begin{array}{l}n = 8\\n =  - 5\end{array} \right. \Rightarrow n = 8\).

Trả lời: 8.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Số cách chọn hai quyển sách khác bộ môn là \(C_5^1 \cdot C_3^1 + C_5^1 \cdot C_6^1 + C_3^1 \cdot C_6^1 = 63\)cách. Chọn B.

Câu 4

A. \( - 1\).        
B. \( - 256\).   
C. \(256\). 
D. \(1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[81\]. 
B. \(35\).  
C. \(256\).
D. \(2835\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP