Khai triển \({\left( {{x^2} - 3xy} \right)^4} = {a_1}{x^8} + {a_2}{x^7}y + {a_3}{x^6}{y^2} + {a_4}{x^5}{y^3} + {a_5}{x^4}{y^4}\).
Khai triển \({\left( {{x^2} - 3xy} \right)^4} = {a_1}{x^8} + {a_2}{x^7}y + {a_3}{x^6}{y^2} + {a_4}{x^5}{y^3} + {a_5}{x^4}{y^4}\).
b) Hệ số của số hạng \({x^6}{y^2}\) trong khai triển \({\left( {{x^2} - 3xy} \right)^4}\) là 54.
c) Số hạng chứa \({x^7}y\) trong khai triển \({\left( {{x^2} - 3xy} \right)^4}\) là \(12{x^7}y\).
Quảng cáo
Trả lời:
Lời giải
\[{\left( {{x^2} - 3xy} \right)^4} = {\left( {{x^2}} \right)^4} + 4 \cdot {\left( {{x^2}} \right)^3} \cdot \left( { - 3xy} \right) + 6 \cdot {\left( {{x^2}} \right)^2} \cdot {\left( { - 3xy} \right)^2} + 4\left( {{x^2}} \right) \cdot {\left( { - 3xy} \right)^3} + {\left( { - 3xy} \right)^4}\]
\[ = {x^8} - 12{x^7}y + 54{x^6}{y^2} - 108{x^5}{y^3} + 81{x^4}{y^4}\].
a) \({a_1} = 1;{a_2} = - 12\).
b) Hệ số của số hạng \({x^6}{y^2}\) trong khai triển \({\left( {{x^2} - 3xy} \right)^4}\) là 54.
c) Số hạng chứa \({x^7}y\) trong khai triển \({\left( {{x^2} - 3xy} \right)^4}\) là \( - 12{x^7}y\).
d) Tổng hệ số của các số hạng mà lũy thừa của \(x\) nhỏ hơn 7 là \(54 - 108 + 81 = 27\).
Đáp án: a) Đúng; b) Đúng; c) Sai; d) Sai.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Bước 1: Xếp 3 nữ luôn đứng cạnh nhau: \(3!\) cách.
Bước 2. Xếp 2 thầy giáo luôn đứng cạnh nhau: \(2!\) cách.
Bước 3. Xem nhóm 3 nữ là nhóm X và nhóm 2 thấy giáo là nhóm Y. Ta xếp nhóm X, Y và 4 học sinh nam còn lại có: \(6!\) cách.
Theo quy tắc nhân \(3! \cdot 2! \cdot 6! = 8640\) cách xếp.
Trả lời: 8640.
Lời giải
Lời giải
Ta có \({\left( {\frac{x}{2} - \frac{4}{x}} \right)^4} = \sum\limits_{k = 0}^4 {C_4^k} {\left( {\frac{x}{2}} \right)^{4 - k}}{\left( { - \frac{4}{x}} \right)^k}\)\( = \sum\limits_{k = 0}^4 {C_4^k} \cdot {\left( { - 1} \right)^k} \cdot {2^{3k - 4}} \cdot {x^{4 - 2k}}\).
Số hạng không chứa \(x\) thì \(4 - 2k = 0 \Leftrightarrow k = 2\).
Khi đó hệ số của số hạng không chứa \(x\) là \(C_4^2 \cdot {\left( { - 1} \right)^2} \cdot {2^{6 - 4}} = 24\).
Trả lời: 24.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.