Cho hai đường thẳng \({d_1}:2x - y + 12 = 0\) và \({d_2}:4mx + my - 1 = 0\). Giá trị của \(m\) để \({d_1}\) và \({d_2}\) vuông góc với nhau là
Quảng cáo
Trả lời:
Đáp án đúng là: A
\({d_1}:2x - y + 12 = 0\) có một vectơ pháp tuyến \(\overrightarrow {{n_1}} = \left( {2; - 1} \right)\).
\({d_2}:4mx + my - 1 = 0\) có một vectơ pháp tuyến \(\overrightarrow {{n_2}} = \left( {4m;m} \right)\).
Để \({d_1}\) và \({d_2}\) vuông góc với nhau thì:
\(\overrightarrow {{n_1}} .\overrightarrow {{n_2}} = 0 \Leftrightarrow 2.4m + \left( { - 1} \right).m = 0 \Leftrightarrow 8m - m = 0 \Leftrightarrow 7m = 0 \Leftrightarrow m = 0\).
Vậy \(m = 0\) thỏa mãn yêu cầu đề bài.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Một viên đạn pháo được bắn ra khỏi nòng pháo với vận tốc ban đầu 500 m/s, hợp với phương ngang một góc bằng 45° nên ta có:
\(g = 9,8\) m/s2; \({v_0} = 500\)m/s; \(\alpha = 45^\circ \).
Phương trình chuyển động của viên đạn là:
\(y = \left( {\frac{{ - 9,8}}{{{{2.500}^2}.{{\cos }^2}45^\circ }}} \right){x^2} + x\left( {\tan 45^\circ } \right) = \frac{{ - 9,8}}{{250\,\,000}}{x^2} + x\).
Để viên đạn bay qua một ngọn núi cao 4 000 mét thì
\(y = \frac{{ - 9,8}}{{250\,\,000}}{x^2} + x > 4\,\,000\)\( \Rightarrow \frac{{ - 9,8}}{{250\,\,000}}{x^2} + x - 4\,000 > 0\).
Xét phương trình bậc hai \(\frac{{ - 9,8}}{{250\,\,000}}{x^2} + x - 4\,000 = 0\) có:
\(a = \frac{{ - 9,8}}{{250\,\,000}} < 0\)
\(\Delta = {1^2} - 4.\left( {\frac{{ - 9,8}}{{250\,\,000}}} \right).( - 4\,\,000) = \frac{{233}}{{625}} > 0\)
Do đó, phương trình bậc hai \(\frac{{ - 9,8}}{{250000}}{x^2} + x - 4000 = 0\) có hai nghiệm phân biệt là:
\({x_1}\) ≈ 20 543; \({x_2}\) ≈ 4 967.
Do đó, \(\frac{{ - 9,8}}{{250\,\,000}}{x^2} + x - 4\,\,000 > 0\) \( \Leftrightarrow \) 4 967 < \(x\) < 20 543.
Vậy khẩu pháo phải đặt cách chân núi trong khoảng từ 4 967 m đến 20 543 m (tất nhiên là phải tính đến tầm bắn của khẩu pháo nữa) thì viên đạn sẽ bay qua đỉnh núi.
Câu 2
A. \(f\left( x \right) = 4x - 5{x^2}\);
B. \(f\left( x \right) = 2 + 3{x^2} - 2x\);
Lời giải
Đáp án đúng là: D
Tam thức bậc hai là biểu thức có dạng \(f\left( x \right) = a{x^2} + bx + c\) với \(a \ne 0\).
Như vậy, \(f\left( x \right) = {x^3} - 4{x^2}\) không phải là tam thức bậc hai.
Câu 3
A. \(f\left( x \right)\) luôn dương trên tập số thực;
B. \(f\left( x \right)\) luôn âm trên tập số thực;
C. \(f\left( x \right)\) luôn không dương trên tập số thực;
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(a = 2021\), \(b = 2022\), \(c = 1\);
B. \(a = 2021\), \(b = 2022\), \(c = 0\);
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(\left( { - \infty ;2022} \right)\);
B. \(\left( {0;2022} \right)\);
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(f\left( x \right) > 0\) với mọi \(x \in \left( { - 1;\,5} \right)\);
B. \(f\left( x \right) > 0\) với mọi \(x \in \left( { - 1;\, + \infty } \right)\);
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. Bạn đó giải đúng phương trình;
B. Bạn đó giải sai phương trình ở bước 1;
C. Bạn đó giải sai phương trình ở bước 2;
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.